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Abstract
Recent research has found that the traditional target P3 consists of a family of P3-like positivities that can be functionally

and topographically dissociated from one another. The current study examined target N2 and P3-like subcomponents

indexing conflict detection and context updating at low- and high-order levels in the neural hierarchy during cognitive

control. Electroencephalographic signals were recorded from 45 young adults while they completed a hybrid go/nogo

flanker task, and Residue Iteration Decomposition (RIDE) was applied to functionally dissociate these peaks. Analyses

showed a stimulus-locked frontal N2 revealing early detection and fast perceptual categorization of nogo, congruent and

incongruent trials, resulting in frontal P3-like activity elicited by nogo trials in the latency-variable RIDE cluster, and by

incongruent trials in the response-locked cluster. The congruent trials did not elicit frontal P3-like activity. These findings

suggest that behavioral incongruency effects are related to intermediate and later stages of motor response re-programming.

Keywords Response inhibition � Context updating � Conflict detection � Cognitive control � Information theory �
Residue iteration decomposition

Introduction

Cognitive control refers to a group of processes associated

with performance of specific tasks through appropriate

adjustments in executive attention and response selection,

whilst minimizing interference from conflicting informa-

tion (Botvinick et al. 2001, 2004), and is associated with

neural activation across a widely distributed fronto-parietal

cortical network for cognitive control (Niendam et al.

2012). Event-related potential (ERP) studies have consis-

tently reported a series of peaks putatively contributed by

this fronto-parietal network and associated with two tem-

porarily contiguous higher-order cognitive processes:

conflict detection and context updating. These two cogni-

tive operations have been most notably associated with the

frontal N2 (circa 200–350 ms post-stimulus onset) and the

fronto-parietal P3 (circa 300–600 ms post-stimulus onset)

ERP components (Gratton et al. 2018; Nguyen et al. 2016;

van Veen and Carter 2002). Recent ERP research in task

switching, however, has suggested that the traditional

division of the P3 complex into a frontal ‘novelty’ P3a

(Courchesne et al. 1975; Friedman et al. 2001; Ranganath

and Rainer 2003; Simons et al. 2001; Spencer et al. 1999)

and a centro-parietal ‘context updating’ P3b component

(Donchin and Coles 1988; Polich 2007) may be overly

simplistic. In turn, new evidence suggests that there may be

multiple overlapping and functionally distinct P3-like

positivities putatively rising from activation across the

fronto-parietal network (Bledowski et al. 2004), each with

subtly distinct scalp topographies that are involved in

handling rapidly changing cognitive demands (Barceló and

Cooper 2018a; Brydges and Barceló 2018; Enriquez-
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Geppert and Barceló 2018). The aim of the current study

was to functionally disentangle these fronto-parietal P3-

like positivities, together with the temporally earlier frontal

N2, and establish their roles in context updating and con-

flict detection, respectively.

N2 ERP waveform

The frontal N2 has been described as a fronto-central

negativity that is commonly examined in conflict detection

and response inhibition tasks such as the go/nogo (a reac-

tion time task that requires participants to respond quickly

to target ‘go’ stimuli and withhold any response to dis-

tractor ‘nogo’ stimuli), and the Eriksen flanker tasks (where

a central target stimulus is presented whilst surrounded by

potentially distracting flanking stimuli; Nieuwenhuis et al.

2004; Yeung and Nieuwenhuis 2009; Zhou et al. 2019).

Frontal N2 amplitude is typically enhanced on infrequently

presented nogo and incongruent flanker trials (where the

flanking stimuli afford a different response than the central

target stimulus) compared to standard go and congruent

flanker trials (where the flanking stimuli afford the same

response as the central target stimulus), and it is thought to

reflect detection of conflict prompting for suppression of

pre-potent responses and competing but inappropriate

responses (Folstein and Van Petten 2008). Although few

studies have directly examined conflict detection during

nogo and competing incongruent responses in flanker tasks,

recent comparisons using a hybrid nogo/flanker task

reported significantly delayed and more posterior N2

effects on incongruent flanker trials compared to nogo

trials, suggesting differential engagement of conflict

detection during these two cognitive control sub-processes

(Brydges et al. 2012, 2013). Additionally, previous fMRI

and ERP source localization studies have implicated the

anterior cingulate cortex in conflict detection and elicita-

tion of the frontal N2 peak (e.g., Bekker et al. 2005; Bot-

vinick et al. 2004; Carter and van Veen 2007; Fan 2014;

van Veen and Carter 2002).

P3 ERP waveform

Traditionally, the P3 waveform has been viewed as a

dichotomous component, split into a frontal P3a that is

associated with processing of surprising stimuli (Courch-

esne et al. 1975; Friedman et al. 2001; Ranganath and

Rainer 2003; Simons et al. 2001; Spencer et al. 1999), and

a parietal P3b component that is thought to index ‘context

updating’ operations (Donchin and Coles 1988; Polich

2007). That is, when the subject updates their model of (or

belief about) the environment following a motivationally

significant event, then the amplitude of the P3b peak is

enhanced (Donchin 1981; Donchin and Coles 1988;

Farwell 2012; Friston et al. 2017; Meijer et al. 2013).

Alternatively, Verleger (1997) reviewed the use of the P3

waveform in mental chronometry and found that its latency

is partly, but not completely, associated with both stimulus

encoding and behavioral response time, suggesting that this

waveform is strictly locked neither to stimulus nor

response onset. Additionally, Verleger (1997) found that

response selection in complex choice tasks can result in a

second, later P3-like waveform (see also Falkenstein et al.

1994), providing evidence of a multiplicity of functionally

distinct fronto-parietal P3-like positivities associated with

cognitive control.

Recent task switching ERP research by Barceló and

colleagues has also suggested the presence of multiple P3-

like positivities overlying fronto-parietal scalp regions,

indicating that the P3 component may consist of a number

of fronto-parietal positive peaks (Barceló and Cooper

2018a; Brydges and Barceló 2018), expanding early

research on subdivisions of the P3 (e.g., Courchesne et al.

1975; Snyder and Hillyard 1976; Squires et al. 1975).

Barceló and Cooper (2018a) tested 31 young adults on a

two-choice cued task-switching paradigm (a task that

required participants to shift task rules and/or stimulus–

response mappings), a go/nogo task, and an oddball task (a

task that required participants to respond to infrequent

target stimuli and not respond to infrequent distractor

stimuli), each using identical stimuli but requiring different

cognitive and motor demands. They found that a target-

locked P3 peak was evoked in all tasks and conditions,

providing evidence for a domain general P3 component.

Additionally, a large late positive complex (LPC) was also

observed when a visual target (requiring a motor response)

immediately followed a transition cue (see Dien et al.

2004; Ruchkin and Sutton 1983; and Rushby et al. 2005,

for seminal work on the role of the LPC in cognitive

control and mental chronometry). Importantly, this LPC

component was modulated by cognitive demands formal-

ized as the amount of contextual information conveyed by

the stimuli for subsequent response selection (cf., Miller

1956). That is, although the LPC was largest on first target

trials immediately following a switch cue (i.e., a visual

indication to shift task rule), it was also elicited, albeit at a

reduced amplitude, by target trials immediately following a

repeat cue (a visual indication to keep using the current

task rule), and even after first nogo trials in the go/nogo

task. In turn, this LPC was absent several trials after the

onset of switch/repeat cues, nogo events, and throughout

the oddball task. These graded modulations in target P3-

like activity tracked dynamic trial-by-trial changes in

contextual information. Barceló and Cooper (2018a) ana-

lyzed the current source densities of target P3

(300–350 ms) and target LPC (400–1100 ms) at electrode

sites overlying fronto-parietal regions, and reported fast
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changing and subtle but significant differences in scalp

topography, implying different configurations of fronto-

parietal generators for different P3-like sub-components in

first target trials. The fronto-parietal distribution of the P3/

LPC complex has been linked to widespread activation

across a fronto-parietal network (Bledowski et al. 2004),

including the lateral prefrontal cortex, temporo-parietal

junction, and pre-supplementary motor area (Niendam

et al. 2012), consistent with a fronto-parietal multiple

demand system for cognitive control (Duncan 2010), and

with groundbreaking early work on subdivisions of the P3

complex (e.g., Courchesne et al. 1975; Dien et al. 2004;

Donchin 1981; Johnson and Donchin 1985; Snyder and

Hillyard 1976; Spencer et al. 1999; Squires et al. 1975).

One limitation of traditional ERP analyses to examine

neurophysiological processes is that they are typically

locked to a particular task event—generally either a sen-

sory stimulus or a motor response (Luck 2014)—when both

stimulus-locked and response-locked activity are elicited

within the same time epoch, and hence, they potentially

temporally overlap each other. As a consequence, an ERP

that is locked to trial-variable reaction times (RTs) will not

show a clear peak and will be smeared within the stimulus-

locked ERP waveform, and vice versa. In an attempt to

counter this, Ouyang and colleagues (Ouyang et al.

2011, 2013, 2015, 2016, 2017) developed a novel method

for separating ERP components based on the variability of

single trial latencies, namely residue iteration decomposi-

tion (RIDE; see also Güntekin and Başar 2010, for an

alternate method to explore the multiplicity of P3-like sub-

component structure). This technique defines clusters of

components that are either stimulus-locked (S cluster),

response-locked (R cluster), or neither (i.e., affected par-

tially, but not completely, by RT—referred to henceforth as

the central C cluster). The RIDE technique is implemented

by iteratively calculating correlations between estimates of

stimulus-locked and response-locked components and EEG

waveforms across single trials (Ouyang et al. 2011).

Brydges and Barceló (2018) applied RIDE analyses to

EEG data on the same two-choice cued switching task, and

showed a variety of functionally distinct albeit topo-

graphically similar P3-like positivities across fronto-pari-

etal regions for each of the stimulus-locked, response-

locked, and latency-variable (central) clusters, each with

subtly distinct amplitude and topographical modulations

occurring as a function of trial-by-trial demands. Specifi-

cally, regular P3-like (300–350 ms) peaks were observed

in all three clusters and were modulated by task-specific

contextual information, implying that the context updating

hypothesis of P300 elicitation (Donchin and Coles 1988)

may be reconceptualized in terms of trial-by-trial updating

of the mental model of the task (aka the ‘‘task-set’’) puta-

tively being held at fronto-parietal networks (Friston et al.

2017; Jepma et al. 2016). A corollary of this new proposal

is that context updating can be triggered by adjustments at

various levels in the putative hierarchy of cognitive control

(Brydges and Barceló 2018), either due to changes in

sensory input, changes in motor responses, and/or changes

in low- and high-order intermediate sensorimotor processes

(Fig. 1a; Miller and Cohen 2001). Additionally, some of

these fronto-parietal P3-like positivities showed a more

frontal scalp distribution under some specific trial condi-

tions, thus reflecting rapid increases in frontal information

processing resources dynamically engaged to meet trial-by-

trial changes in cognitive demands (Koechlin and Sum-

merfield 2007). In sum, these results suggest that the target

P3 complex consists of several functionally and topo-

graphically distinct stimulus-locked, intermediate latency-

variable, and response-locked P3-like positivities con-

tributed by a widely distributed fronto-parietal network

(Niendam et al. 2012). This newly proposed P3 taxonomy

implies multiple functionally and temporally distinct,

though partly overlapping context updating operations that

can be extracted from the traditional ERP waveform.

Miller and Cohen’s (2001) theory of prefrontal
function

Miller and Cohen (2001) posited that ‘‘cognitive control

stems from the active maintenance of patterns of activity in

the prefrontal cortex that represent goals and the means to

achieve them’’ (p. 167). Accordingly, one function of the

prefrontal cortex is to supervise and coordinate signals to

and between other neural regions that are responsible for

encoding incoming information (e.g., a stimulus), applying

various rules to the information (e.g., response conflict

resolution), and the resulting output (e.g., selecting an

appropriate response). This coordination aspect is espe-

cially important when presented stimuli are ambiguous

(i.e., activate more than one input–output pathway), thus

causing response conflict. The schematic representation

shown in Fig. 1a illustrates these postulated operations,

highlighting the low-level sensory processing units

indicative of neural representations of the sensory event

together with response processing units indicative of the

selection of the appropriate response options. Further,

according to Miller and Cohen’s (2001) schematic, the

prefrontal cortex accommodates higher-order ‘hidden’ or

‘latent’ variables, whose role is to activate and coordinate

low-order neural pathways to ensure the selection of the

appropriate response. These are referred to as ‘hidden’

units because they cannot be directly observed and need to

be inferred from the information exchanges between an

agent and its environment (i.e., ‘‘which means computing

the posterior probability of (unknown or hidden) causes,
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given observed outcomes’’; Friston et al. 2017 p. 7). These

high-order hidden units are assumed to be held at prefrontal

cortices and they arbitrate the information flow between

sensory stimuli and motor responses (or sensorimotor

processes) at lower levels in the neural hierarchy.

Figure 1a provides an illustration of Miller and Cohen’s

(2001) model. The stimuli from the hybrid flanker go/nogo

task used in the current study are on the left, the response

options are on the right, and in the middle are hidden units

(though in order to keep the model simple, only three of six

possible stimulus types are shown, including no incon-

gruent stimuli, and only two out of three possible response

options). An example of such hidden units is any simple

rule of action for goal-directed behavior (i.e., ‘press the left

button for all left-looking green fish’, or ‘do not respond to

any red fish’). In Fig. 1a, the role of high-order hidden

variables in prefrontal cortex is to activate and coordinate

low-level neural pathways so that presentation of a red

nogo stimulus results in no response being made. From this

view, prefrontal cortex guides the flow of neural activity to

update stimulus–response mappings for the current nogo

trial (i.e., no response is to be made), through the neural

node(s) involved in inhibiting a motor response. From

there, these pathways can be strengthened through repeated

practice and successful learning. The hierarchical structure

of this model of prefrontal function is compatible with the

multiple and functionally distinct high- and low-order

context updating processes to surprising stimulation pos-

ited by the reformulated hypothesis of P3 elicitation (cf.,

Barceló and Cooper 2018b; Brydges and Barceló 2018).

The current study

The current study aimed to extend previous results by

examining target N2 and P3-like sub-components indexing

conflict detection and context-updating processes at both

low- and high-order levels in the neural hierarchy during

cognitive control in a flanker task. In doing so, we adopted

a well-known model of prefrontal executive control (Miller

and Cohen 2001; Fig. 1a), together with formal informa-

tion theory estimates of cognitive demands associated with

the processing of nogo, congruent, and incongruent flanker

trials (Fig. 1b; cf., Cooper et al. 2016; Koechlin and

Summerfield 2007; Miller 1956; Zénon et al. 2019). This

formal framework helped us characterize the relative

contribution from between-condition differences in sen-

sory, motor and intermediate sensorimotor hidden units

towards the updating of the ongoing task context, as the

participants’ uncertainty about any of the changes was

assumed to elicit conflict detection (frontal N2) and context

updating (fronto-parietal P3) operations (Barceló and

Cooper 2018a; Fan 2014; Friston et al. 2017; Parr et al.

2020). The task context was defined as any sensory, motor,

or intermediate sensorimotor neural representations (also

high-order hidden units; Fig. 1a), as well as their proba-

bilistic interdependencies (cf. Friston et al. 2017),

Fig. 1 Formal modelling of cognitive demands in the flanker task. aAn

integrative model of prefrontal executive control (adapted from Miller

and Cohen 2001) was adopted to formalize contextual information in

the flanker task in terms of all sensory, motor and intermediate low- and

high-order sensorimotor representations (or hidden units), as well as

their probabilistic interdependencies, inasmuch as an active working

memory representation of all those elements was necessary for efficient

flanker task performance. For simplicity, only three trial types are

illustrated here, namely, a congruent row of green left-facing fish is

mapped onto a left-hand response, whereas two rows of red fish are

mapped onto a nogo response. Actual stimulus displays consisted of five

green or red fish in a row, and the full stimulus set consisted on six

stimulus exemplars that could be mapped either to left-hand, right-hand,

or nogo responses. Cognitive demands were estimated in terms of

sensorimotor information transmission across both low- and high-order

levels within the putative hierarchy of cognitive control. b A priori

estimations of transmitted information, I(si, rj) ? I(si, tsk), between

stimuli and responses as a function of stimulus entropy, H(si) = - p(si)
� log2 p(si), of congruent, incongruent and nogo stimuli. The informa-

tion transmitted from stimuli to responses is derived from the notion of

mutual information, I(S; R), between the set of all stimuli, S {s1, s2, s3,
s4, s5, s6}, and their associated responses, R {r0, r1, r2} (cf. Attneave

1959; Koechlin and Summerfield 2007; see details in Supplementary

material). The dotted line marks the theoretical human capacity for

holding information in working memory: 2.5 bits (cf. Miller 1956).

Accordingly, the same trial type could convey different amounts of

transmitted information depending on the hypothetical number of high-

order hidden units assumed to account performance in the flanker task.

Model 1: 1 hidden unit, predicts no frontal ERP differences between

task conditions; model 2: 2 hidden units, predicts frontal differences

between green (congruent and incongruent go conditions) and red

(nogo) stimuli; model 3: 3 hidden units, predicts frontal differences

between all three task conditions (see the main text for a full

explanation). (Color figure online)
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inasmuch as an active working memory representation of

all those elements is necessary for efficient task perfor-

mance. The task consisted of a hybrid go/nogo flanker task

(Brydges et al. 2012, 2013) where a congruent row of green

fish was to be categorized using left or right button

presses according to the direction of the central fish. In

25% of trials, the direction of the central fish was incon-

gruent to that of surrounding flanker fish. Further, ‘nogo’

trials (25% of trials) consisted of congruent fish presented

in a different color (red). Through explicit task instructions

and practice, participants acquired the correct stimulus–

response (S–R) mappings to be implemented through low-

order sensorimotor S–R links (Fig. 1a). Importantly, the

dynamic engagement of prefrontal executive resources on a

trial-by-trial basis was hypothesized to depend on the

number of high-order hidden units necessary for regulating

the dynamic updating of a constant number of low-order

sensorimotor units at posterior association cortices, with a

larger number of high-order hidden units requiring larger

prefrontal resources. The dynamic trial-by-trial changes in

cognitive demands associated with the processing of dif-

ferent flanker stimuli could thus be modelled as informa-

tion transmission through hypothetical high-order hidden

units (Fig. 1a, b; cf. Fan 2014; Friston et al. 2017; Parr

et al. 2020), with one high-order hidden unit implying no

transmission of information through prefrontal cortices

(model 1; Fig. 1b), and progressively larger numbers of

high-order hidden units involving gradually larger amounts

of information transmission through prefrontal regions

(Fig. 1b; Table 1; see Supplementary materials). The fea-

sibility of each of these models was then assessed using

Bayesian analyses of the electrophysiological evidence

provided by RIDE decomposed target N2 and P3-like

activity from the S, C and R clusters, and specifically the

activity recorded over frontal scalp regions. Consequently,

the absence of task differences in any RIDE cluster over

frontal regions would support model 1 (i.e., just one high-

order hidden unit). In turn, significant differences between

all congruent, incongruent, and nogo task conditions over

frontal regions in some of the RIDE clusters would lend

support to model 3 (see Fig. 1b).

Admittedly, this is a relatively novel approach to

examine the context updating hypothesis of P300 elicita-

tion that considers it as a summation of information pro-

cesses at both low-order (post-rolandic, P3b) and high-

order (pre-rolandic, P3a) multimodal association cortices

of fronto-parietal networks, with progressively larger

information processing demands recruiting progressively

more frontal regions (cf., Barceló and Cooper 2018a, b;

Brydges and Barceló 2018). However, this hierarchical

view of cognitive control is consistent with new active

Bayesian inference theories of brain function (e.g., Friston

et al. 2017), as well as widely accepted models of pre-

frontal function (Koechlin and Summerfield 2007; Miller

and Cohen 2001). Moreover, this is also in line with recent

modeling work suggesting that the anterior P3a and pos-

terior P3b sub-components encode Bayesian belief updat-

ing at two distinct levels in the neural hierarchy (Kopp and

Lange 2013; Kopp et al. 2016). In order to examine this

hypothesis further, information transmission between hid-

den variables and potential outcomes or responses in our

flanker task was modeled (Table 1; Supplementary mate-

rials) following a very simple approach similar to that of

Koechlin and Summerfield (2007), who were inspired on

the pioneering work by Miller (1956) in defining the

capacity limits of humans for processing information.

Additionally, there is a direct mathematical correspon-

dence between the algorithms used by the hierarchical

Bayesian modeling of belief updating (Friston et al. 2017;

Parr et al. 2020) and the conditional and joint probabilities

used in our information theory metrics for estimating

information transmission (Doya and Ishii 2007). In sum,

our simple modeling of information transmission (Table 1)

predicts larger information processing demands with a

larger number of hidden variables involved at high-order

levels in the neural hierarchy of control (cf., Friston et al.

2017; Parr et al. 2020).

Under the assumption that the frontal N2 is elicited as a

result of conflict detection (Fan 2014; Folstein and van

Petten 2008; Nguyen et al. 2016; van Veen and Carter

2002), whereas the target P3 is elicited as a result of

context updating operations to surprising stimulation

Table 1 Modeling of

transmitted S–R information (in

bits) for the three task

conditions in Fig. 1, as a

function of the number of

hypothetical high-order hidden

units

Task conditions Model 1 (1 hidden unit) Model 2 (2 hidden units) Model 3 (3 hidden units)

Congruent 1.42 1.84 2.42

Incongruent 1.42 1.84 3.42

NoGo 2.00 4.00 4.00

Low-order R I(si, rj) 4.84 4.84 4.84

High-order R I(si, tsk) 0.00 2.84 5.00

Models considering different high-order hidden units for left and right stimuli and responses were dis-

missed as implausible, given evidence of similar target N2 and P3 responses irrespective of the left versus

right direction of flanker stimuli. For technical details, see Supplementary materials

Cognitive Neurodynamics (2020) 14:795–814 799
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(Barceló and Cooper 2018a; Donchin and Coles 1988;

Friston et al. 2017; Jepma et al. 2016), the current study

aimed to examine how many prefrontal higher-order hid-

den variables control behavior in this flanker task. Several

hypotheses can be derived from the theoretical rationale

described above, depending on the number of high-order

hidden units involved in producing efficient flanker task

behavior. For instance, if only one high-order hidden unit

was needed (model 1), then electrophysiological differ-

ences between task conditions should not be apparent over

frontal regions in any of the RIDE clusters. Alternatively,

our model’s predictions differ depending on whether two

high-order hidden units (i.e., one to categorize the frequent

green targets, and one to categorize the infrequent red nogo

trials; model 2), or three hidden units were involved (i.e.,

one for frequent congruent targets, one for infrequent

incongruent targets, and one for infrequent nogo trials;

model 3, Fig. 1b), with larger task differences in N2 and P3

amplitudes over frontal regions predicted for those task

conditions requiring larger prefrontal working memory

demands (reflected by the 2.5 bit limit in each model in

Fig. 1b; cf. Miller 1956). That is, model 1 predicts no

differences in frontal ERP activity between any task con-

ditions, model 2 predicts frontal differences only between

green (i.e., congruent and incongruent conditions) and red

(nogo) stimuli, and model 3 predicts frontal differences

between all three task conditions. These models assume the

same amount of transmitted information through low-level

sensorimotor pathways for the six S–R links required to

perform the task. Hence, any differences among models

depend on the number of hidden high-order hidden units in

the hierarchy of control (Fig. 1a; Table 1). As such, it was

expected that high-order conflict detection (reflected in the

frontal N2 peak) would be more likely to also elicit high-

order context updating (frontal P3a activity). Additionally,

based on Brydges and Barceló’s (2018) revised version of

the context updating theory, it was hypothesized that the

target P3 complex would be elicited by multiple context

updating operations, namely, by the updating of surprising

sensory units (as evidenced by observing between-condi-

tions differences in P3-like positivities in the S cluster), the

updating of motor units (R cluster), or the updating of

intermediate sensorimotor units (C cluster). Further, the

scalp topographies of these positivities were expected to

differ subtly between task conditions, with more frontally

distributed scalp topographies for the most informative

flanker stimuli (Fig. 1b, Table 1). Based on the earlier

latency of the frontal target N2 component, and its role in

conflict detection, task effects were mostly predicted for

the stimulus-locked cluster, as a previous stage for subse-

quent context updating indexed by target P3-like activity.

Method

Participants

The current study combined the adult participants of two

previous studies (n = 12 from Brydges et al. 2012; n = 13

from Brydges et al. 2013), plus previously unpublished

data from 20 more participants. In total, 45 undergraduate

psychology students (Mage = 21.93 years, SDage-

= 6.30 years, range = 18–49 years); 26 females and 19

males; 37 right-handed and 8 left-handed) were recruited

for the study. All participants self-reported normal or

corrected-to-normal vision, no history of color blindness or

neurological disorders, and each participant performed

above chance on all three task conditions. The samples

were combined in order to increase statistical power given

that neuroscientific studies are commonly underpowered

(Button et al. 2013). The current hypotheses were only

tested on the entire sample and not on the previously

published samples.

Materials

The same hybrid go/nogo flanker task used by Brydges

et al. (2012, 2013) was used in this study. Each stimulus

consisted of five fish presented on a blue background. An

arrow on the body of the fish specified direction and the

target was the central fish. Participants were instructed to

press a response button on a keyboard (red felt patches on

the ‘Z’ and ‘/’ keys of a QWERTY keyboard) analogous to

the direction of the central fish. The task had three condi-

tions: in the congruent condition (.5 probability), the fish

were green and all facing the same direction (.25 proba-

bility for left and right facing green fish, respectively). In

the incongruent condition (.25 probability), the fish were

also green, however the flankers faced the opposite direc-

tion to the central target (with .125 probability of left and

right incongruent flankers, respectively). In the nogo con-

dition (.25 probability), the fish were congruent and red

(again with .125 probability of either left or right facing red

fish), and participants were required to withhold their

response. Each fish subtended .9� horizontally and .6�
vertically, with .2� separating each fish (see Fig. 2). A

fixation cross was presented in the centre of the computer

screen for 500 ms before the stimulus appeared immedi-

ately above it. Stimuli were presented in random order for

300 ms with a 2000 ms inter-stimulus interval. The task

Fig. 2 The six stimuli used in the current study
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was presented to the participants as a game in which they

should feed the central fish. Speed and accuracy were

equally emphasized. Eight practice trials were adminis-

tered to ensure the participants understood the task

requirements. A total of 176 trials were subsequently pre-

sented in one block.

Information theoretical estimations

We adopted an information theoretical model of cognitive

control as a formal tool to help us operationalize the task

context in terms of low- and high-order sensorimotor (S–R)

information transmission within a putative hierarchy of

fronto-parietal control processes (Fig. 1a; cf. Barceló and

Knight 2007; Barceló and Cooper 2018a). In doing so, we

followed recommendations by Miller (1956) for estimating

the amount of information transmitted between contextu-

ally related stimuli and responses. These estimates allowed

us to define the informational structure of our flanker task

in terms of, not only mean stimulus probabilities, but also

joint probabilities among stimuli, their associated motor

responses, and any relevant cognitive control operation

putatively involved (e.g., updating of high-order hidden

units; Fig. 1a). Thus, the task context was modelled at two

hierarchically distinct levels: (1) low-order sensorimotor

S–R links, and (2) hypothetical high-order hidden units

(Miller and Cohen 2001; Friston et al. 2017). Accordingly,

the working memory representation of congruent green

flanker targets and their associated responses (i.e., the low-

order si-rj links in Fig. 1a) was to be twice as frequently

activated compared to the working memory representation

of incongruent green flanker targets, or that of red nogo

distracters. Importantly, the dynamic engagement of pre-

frontal resources on a trial-by-trial basis was hypothesized

to depend on the number of high-order ‘hidden’ units

necessary for regulating the dynamic updating of the six

low-order sensorimotor units being held at posterior asso-

ciation cortices, with a larger number of high-order hidden

units involving greater allocation of prefrontal resources

(Fig. 1b; cf. Friston et al. 2017). Thus, whereas one high-

order hidden unit implies no transmission of information

through prefrontal cortices, three high-order hidden units

involve an averaged transmission of 5.0 bits of information

(Table 1). Models considering different high-order hidden

units for left and right stimuli and responses were dis-

missed as implausible, given evidence of similar target N2

and P3 responses irrespective of the left versus right

direction of flanker stimuli. Note that these information

estimates can be seen as a more formal and accurate way to

translate into bits the mean probabilities of task events, as

is common practice in most experimental psychology

studies. Yet they provide a common metric to compare

different task conditions at both low- and high-order levels

in the putative hierarchy of cognitive control. For instance,

instead of saying that a left green congruent target occurs

with an overall mean probability of p = .25 in our flanker

task, we chose to quantify this in bits by saying that the

sensory entropy of this trial type is: H(s1) = - .25�log2

.25 = .50 bits. A similar formalism was used to quantify in

bits the relative probabilities of the six specific low-order

si-rj links, and the hidden high-order si-tsk links, using the

concept of transmitted information: I(si, rj) = log2 p(si, rj)

-log2 p(si) -log2 p(rj) and I(si, tsk) = log2 p(si, tsk) -log2

p(si) -log2 p(tsk) for low- and high-order levels in the

hierarchy of control, respectively (Fig. 1a; cf. Miller 1956).

Table 1 offers a summary of these information-theoretic

estimations; for a more detailed technical description, see

the Supplementary material (cf. Barceló and Cooper

2018a).

Electrophysiological acquisition

The EEG was continuously recorded using an Easy-CapTM.

Ag/AgCl sintered ring electrodes were placed at 33 sites

based on Easy-Cap montage 24. Eye movements were

measured with bipolar leads placed above and below the

left eye. The EEG was amplified with a NuAmps

40-channel amplifier, and digitized at a sampling rate of

250 Hz. Impedances were below 5 kX prior to recording.

During recording, the ground lead was located at AFz and

the right mastoid was set as reference.

EEG data were processed using MATLAB (Mathworks,

Navick, MA) through a pipeline utilizing EEGLAB version

14..0 (Delorme and Makeig 2004), ERPLAB version 6.1.3

(Lopez-Calderon and Luck 2014) and ADJUST version

1.1.1 (Mognon et al. 2011). Preprocessing was performed

in EEGLAB by re-referencing offline to a common aver-

age, and bandpass filtering the data (.1–30 Hz). Epochs for

each stimulus type were extracted from 100 prestimulus to

1000 ms poststimulus onset. Independent components

analysis was conducted using the extended infomax algo-

rithm (Bell and Sejnowski 1995), and ADJUST was used to

detect any artefactual components (including blinks, hori-

zontal and vertical eye movements, and muscle move-

ment). These components were removed, and the

remaining components were back-projected to the elec-

trode space. The mean number of components removed per

participant was 6.67 (SD = 3.36). Epochs containing EEG

signals exceeding ± 100 lV at any electrode site were

excluded from analyses.

RIDE

RIDE analysis followed the methods described in Ouyang

et al. (2011, 2015). The RIDE toolbox and manual can be

found at http://cns.hkbu.edu.hk/RIDE.htm. RIDE
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decomposes ERPs into stimulus-locked, response-locked,

and central clusters (terms S, R, and C, respectively, from

here), though for the nogo condition, no R cluster was

extracted as a correct nogo trial requires no response to be

made (Ouyang et al. 2013). The latency estimates of S and

R (LS and LR) were obtained from the stimulus onset to

300 ms post-stimulus onset, and from 200 pre-response to

200 ms post-response, respectively. The latency estimate

of C (LC) is derived from the data of each individual par-

ticipant using the following iterative process.

Initial estimation of LC

RIDE separates component clusters by estimating the

latency of the S, C, and R clusters on single trials. It is

assumed that the C cluster is not stimulus or response-

locked, and that LC is variable over single trials as a result

of this. Based on LS, LC, and LR, the evoked potentials of

S, C, and R are dissociated from one another in later steps.

The decomposition module makes use of both external

time markers (e.g., stimulus and response onset) and esti-

mated component latencies. The latency-locked clusters

(i.e., S and R clusters) are removed from the single-trial

data before the latency-variable component cluster (the C

cluster) is estimated. An initial estimation of LC was made

with the Woody (1967) filter for each recording site

between 250 and 550 ms. The mean latency across chan-

nels was taken as LC across the scalp (for further technical

details see Ouyang et al. 2011, 2015).

Statistical analyses

For both traditional ERP and RIDE analyses, 3 9 2 repe-

ated measures ANOVAs were conducted on the data to

identify mean differences in amplitude between conditions

(congruent, incongruent, and nogo) and electrode site (Fz

and Pz). These electrode sites were chosen based on Bry-

dges and Barceló (2018). For the ERP analyses, mean

amplitudes were analyzed between 220 and 270 ms (cor-

responding to the N2 component), 300–400 ms (P3),

450–550 ms (LPC1), and 600–700 ms (LPC2). These

latency windows were chosen based on previous N2 and

target P3 research (e.g., Barceló and Cooper 2018a;

Falkenstein et al. 1999) and visual inspection of the grand

mean ERP waveforms. Peak-to-peak N2-P3 amplitudes

were also measured to clarify the sign of congruency

effects at frontal regions (Folstein and Van Petten 2008).

To ensure consistency, these same time windows were used

in the RIDE analyses: the 220–270 ms and 300–400 ms

were extracted from the S cluster, and the 300–400 ms,

450–550 ms, and 600–700 ms windows were extracted

from the C cluster. This also follows the procedures applied

by previous research using RIDE (e.g., Ouyang et al. 2011;

Verleger et al. 2014). Additionally, the R cluster was

defined as the mean amplitude occurring 50 ms before a

correct response was made, to 50 ms after the response,

following Brydges and Barceló (2018). As mentioned

previously, no R cluster was extracted for the nogo con-

dition as a correct trial requires no response to be made,

and hence, the statistical design was a 2 (site) 9 2 (con-

dition) repeated measures ANOVA. Additionally, a repe-

ated measures ANOVA with condition as the only factor

was conducted on the behavioral accuracy data, and a

paired-samples t test was conducted on the mean RTs for

the congruent and incongruent conditions.

In addition to traditional null hypothesis significance

testing, we conducted Bayesian analyses (Keysers et al.

2020; Wagenmakers 2007; Wagenmakers et al. 2018).

Bayesian statistics are advantageous over frequentist

statistics for various reasons: first, Bayesian analyses allow

a hypothesis to be accepted or rejected by gathering evi-

dence in favor of it (Dienes 2011; Kruschke 2013). That is,

the alternative hypothesis can only be falsified by accepting

the null hypothesis over it, which Bayesian statistics allow

for. Second, Bayesian statistics allow the same data points

to be repeatedly tested without researchers having to pre-

commit to a specified sample size, whereas this cannot be

done with frequentist statistics (Armitage et al. 1969).

Third, Bayesian statistics are produced in terms of the

probability of hypotheses given data, as opposed to data

given hypotheses (Cohen 1994). Bayesian statistics are

more interpretable than frequentist statistics (Dienes 2011;

Kruschke 2013), and assess the credibility of one hypoth-

esis compared to another. Hence, Bayesian methods are

well-suited for testing hypotheses about which of the three

models presented in Table 1 and Fig. 1b best explains ERP

and RIDE data at frontal regions, particularly in order to

counteract potential Type I errors associated with p values

of conventional frequentist statistics (Luck and Gaspelin

2017). A Bayes Factor (BF) was calculated from the

Bayesian ANOVAs to test how much the data supported

the alternative (H1) over the null (H0) hypothesis (that is,

how strong the evidence was in favor of one model over

another), using a an r scale with a width of .50 for fixed

effects. Based on guidelines set by Jeffreys (1961), a

BF10[ 3 was considered sufficient evidence in favor of the

alternative hypothesis, and a BF10[ 10 was considered to

be strong evidence in favor. Of note, BF10 refers to the BF

value of H1 being supported over H0, whereas BF01 refers

to the opposite. To calculate BF01, one simply inverts the

BF10 value. Additionally, posterior probabilities (hence-

forth referred to as p(H|D)) evaluated the probability of a

hypothesis being correct given the observed data, with

values of .50-.75, .75-.95, .95-.99, and[ .99 indicating

weak, positive, strong, and very strong evidence in favor of

the alternate hypothesis, respectively (Masson 2011;
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Raferty 1995). Alternative hypotheses would only be

accepted if BF10 [ 3. Both the frequentist and Bayesian

analyses were conducted using JASP version .8.5.1 (JASP

Team 2018; Brydges and Gaeta 2019). To save space,

simple effects of the frequentist ANOVA for Fz are only

reported when they differ from the results of Bayesian

analyses.

Results

Behavioral results

Descriptive statistics of the behavioral data are presented in

Table 2. A repeated measures ANOVA found a main effect

of condition on accuracy (F(2,88) = 72.98, p\ .001, gp
2-

= .62), and subsequent post hoc paired-samples t-tests

found lower accuracy on the incongruent condition than the

congruent and nogo conditions (congruent-incongruent

t(44) = 9.83, p\ .001, Cohen’s d = 1.99; congruent-nogo

t(44) = 1.59, p = .12, Cohen’s d = .26; nogo-incongruent

t(44) = 8.44, p\ .001, Cohen’s d = 1.37). Also, mean RTs

were longer in the incongruent condition compared to the

congruent condition (t(44) = 15.80, p\ .001, Cohen’s

d = 1.19).

Conventional ERP analyses

Figure 3 shows the grand average ERP waveforms for the

three conditions at Fz and Pz sites, and mean amplitude

scalp maps corresponding to five time windows in the

recording epoch, corresponding to the N2, P3, LPC1, and

LPC2 components. To aid comparison between conven-

tional ERP components and RIDE clusters, Table 3 pre-

sents a summary of the main effects and interactions for the

site and condition factors; however, for the sake of brevity,

only those interactions, main effects, and post hoc tests that

are of theoretical importance are described in-text below.

N2 (220–270 ms)

The site 9 condition interaction was not significant,

whereas the main effects of condition and site both reached

Table 2 Descriptive statistics of behavioral results (means, with

standard deviations in parentheses)

Condition Reaction time (ms) Accuracy (proportion correct)

Congruent 378 (43) .98 (.03)

Incongruent 447 (60) .82 (.11)

Nogo N/A .96 (.06)

Fig. 3 Stimulus-locked grand average ERP waveforms and scalp

topography maps. a Waveforms depict mean voltages recorded from

Fz (top) and Pz (bottom). Shaded areas indicate time windows used to

measure mean ERP amplitudes tracking the temporal dynamics of the

N2 and late P3-like complex: N2 (220–270 ms), P3 (300–400 ms),

LPC1 (450–550 ms), and LPC2 (600–700). b Scalp topographies of

the N2 and three late P3-like positivities depicted in a across task

conditions (i.e., congruent, incongruent, and nogo)
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significance (see Table 3). Bayesian analyses at Fz found

evidence in favor of a difference between conditions

(BF10 = 93.50, p(H|D) = .99), with post hoc tests finding

evidence in favor of a smaller (less negative) incongruent

N2 than the congruent (BF10 = 9.51) and nogo conditions

(BF10 = 27.87), which did not differ between each other

(BF10 = .88).

P3 (300–400 ms)

The site 9 condition interaction and the main effect of site

were both significant, whereas the main effect of condition

was not (Table 3). Post-hoc t-tests found larger mean P3

amplitudes in the nogo condition than in the congruent and

incongruent conditions at Fz (t(44) = 4.24, p\ .001, and

t(44) = 3.14, p = .003, respectively), with the reverse

being true at Pz (t(44) = - 5.26, p\ .001, and

t(44) = - 3.25, p = .002, respectively). Bayesian analyses

at Fz found evidence in favor of a difference between

conditions (BF10 = 177.06, p(H|D)[ .99), with the nogo

P3 being larger than the congruent (BF10 = 211.36) and

incongruent conditions (BF10 = 11.08), which did not dif-

fer between them (BF10 = .16).

LPC1 (450–550 ms)

The site 9 condition interaction was significant, as were

the main effects of site and condition (Table 3). Paired-

samples t-tests found that the incongruent and nogo con-

ditions elicited larger LPC1 amplitudes than the congruent

condition at Fz (t(44) = 2.25, p = .029, and t(44) = 3.93,

p\ .001, respectively). At Pz, however, the incongruent

condition evoked larger LPC1 amplitudes than the con-

gruent and nogo conditions (t(44) = 4.81, p\ .001, and

t(44) = 4.30, p\ .001, respectively). Bayesian analyses at

Fz found evidence in favor of a difference between con-

ditions (BF10 = 20.33, p(H|D) = .95), with the nogo LPC1

being larger than the congruent (BF10 = 87.24). The evi-

dence for/against differences between congruent and

incongruent LPC1, and incongruent and nogo LPC1 was

weak (BF10 = 1.58 and BF10 = .52, respectively).

LPC2 (600–700 ms)

The site 9 condition interaction was significant, as were

the main effects of site and condition (Table 3). Paired-

samples t-tests found that the incongruent condition evoked

larger mean LPC2 amplitudes than both the congruent and

nogo conditions at Pz (t(44) = 6.05, p\ .001, and

t(44) = 2.45, p = .018, respectively). Bayesian analyses at

Fz found evidence against a difference in LPC2 between

conditions (BF10 = .16, p(H|D) = .14).

RIDE analyses

Waveforms and scalp maps for the S, C, and R clusters are

displayed in Figs. 4, 5 and 6, respectively. The S cluster

appears to reflect mostly early sensory and attentional

processes at stimulus onset. In the C cluster, the nogo

condition elicits a large central P3-like positivity, whereas

Table 3 Summary of ANOVA

results showing task effects for

conventional ERP components

and the RIDE decomposed C, S

and R clusters

Site

df 1, 44

Condition

df 1, 44

Site x condition

df 2, 88

F g2 F g2 F g2

ERPs

N2 (220–270 ms) 6.52* .13 8.75*** .17 2.30 ns .05

P3 (300–400 ms) 55.35*** .56 .72 ns .02 21.35*** .33

LPC1 (450–550 ms) 61.44*** .58 13.23*** .23 9.90*** .18

LPC2 (600–700 ms) 7.72** .15 4.23* .09 8.81*** .17

RIDE S cluster

sN2 .99 ns .02 10.81*** .20 5.76** .12

sP3 6.56* .13 3.98* .08 3.34* .07

RIDE C cluster

cP3 41.24*** .48 6.78** .13 1.96 ns .04

cLPC1 36.20*** .45 10.76*** .20 1.05 ns .02

cLPC2 7.33** .14 3.59* .08 2.67 ns .06

RIDE R cluster

rP3 83.19*** .65 1.54 ns .03 6.33* .13

ns non-significant, * p\ .05, ** p\ .01, *** p\ .001. The df values for the R cluster interaction were 1,

44

804 Cognitive Neurodynamics (2020) 14:795–814

123



the incongruent condition elicits a flatter P3/LPC-like

centro-parietal complex. In the R cluster, the positive

parietal peaks are closely associated with response time, as

expected, with an additional frontal peak elicited by the

incongruent trials. A summary of the simple effects for the

Bayesian analyses at the Fz site is presented in Table 4.

Fig. 4 Stimulus-locked waveforms and scalp maps for the S cluster.

a Waveforms depict grand-averages recorded from Fz (top) and Pz

(bottom). The shaded area is the latency window used to measure P3-

like activity in the S cluster: sN2 (220–270 ms), and sP3

(300–350 ms). b Scalp topographies for each task condition are

mean amplitudes within the shaded time window in the waveforms
Fig. 5 Latency-variable C cluster waveforms and scalp topography

maps. a Waveforms depict mean voltages recorded from Fz (top) and

Pz (bottom). Shaded areas indicate time windows used to measure

mean amplitudes tracking the temporal dynamics of the C cluster P3-

like complex: cP3 (300–400 ms), cLPC1 (450–550 ms), and cLPC2

(600–700 ms). b Scalp topographies of the three late cP3-like

positivities depicted in a across task conditions (i.e., congruent,

incongruent, and nogo)
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S cluster

For the sN2 component, the site 9 condition interaction

and the main effect of condition were both significant

(Table 3). Paired-samples t-tests found that mean sN2

amplitudes elicited by the nogo condition were larger

(more negative) at Fz than at Pz (t(44) = 2.12, p = .040).

Bayesian analyses at Fz found evidence for differences

between conditions (BF10 = 2987.04, p(H|D)[ .99),

revealing strong evidence for differences between all

conditions (nogo[ congruent[ incongruent, where ‘[’

indicates more negative; nogo-congruent BF10 = 6.42;

nogo-incongruent BF10 = 295.30; congruent-incongruent

BF10 = 10.54).

For the sP3 component, both main effects and the

site 9 condition interaction were significant (Table 3).

Paired-samples t–tests found that sP3 amplitude at Pz was

larger in the incongruent condition than both in the con-

gruent (t(44) = 2.49, p = .017) and the nogo conditions

(t(44) = 3.37, p = .002). Bayesian analyses at Fz found

evidence against a difference between any conditions

(BF10 = .07, p(H|D) = .07) for mean N2 amplitudes. In

turn, when considering peak-to-peak N2-P3 amplitudes at

Fz, Bayesian analyses found moderate evidence in favor of

differences between conditions (BF10 = 3.67, p(H|D) =

.79), with the nogo N2-P3 being larger than the congruent

N2-P3 (BF10 = 56.90); with weak evidence for/against

differences between incongruent and nogo N2-P3 peak-to-

peak amplitudes (BF10 = .59).

C cluster

For the cP3 component, the site 9 condition interaction

was not significant, whereas there were main effects of site

and condition (see Table 3). Post-hoc tests showed that cP3

amplitude was maximal at Pz in comparison to Fz

(t(44) = 6.42, p\ .001), and the cP3 amplitude was larger

for nogo than congruent and incongruent conditions

(t(44) = 3.29, p = .002, and t(44) = 2.71, p = .010),

respectively). Bayesian analyses at Fz found evidence in

favor of a difference between conditions (BF10 = 13.72,

p(H|D) = .93), showing evidence for differences between

nogo and the other two conditions (nogo-congruent BF10-

= 11.53; nogo-incongruent BF10 = 4.65).

For the cLPC1 component, the site 9 condition inter-

action was not significant, but the main effects of site and

condition both reached significance (Table 3). Maximal

Fig. 6 Response-locked waveforms and scalp maps for the R cluster.

a Waveforms depict grand-averages recorded from Fz (top) and Pz

(bottom). Black vertical lines indicate the median response time for

each task condition and shaded area is the latency window used to

measure P3-like activity in the R cluster (50 ms pre-response to

50 ms post response). b Scalp topographies for each task condition

are the mean amplitudes measured in a 50 ms pre-response to 50 ms

post response time window around the median response time for each

condition

Table 4 Summary of simple

effects for Bayesian analyses at

the Fz site

Time window ERPs S cluster C cluster R cluster

N2 (220–270 ms) N = C[ I N[C[ I (3) – –

P3 (300–400 ms) N[C = I N = C = I (1) N[C = I (2) C\ I (3)

LPC1 (450–550 ms) N[C = I – N = C = I (1) –

LPC2 (600–700 ms) N = C = I – N = C = I (1) –

N nogo trials, C congruent trials, I incongruent trials. Values in parentheses next to RIDE clusters indicate

the models that are best supported by the findings (1 = model 1; 2 = model 2; 3 = model 3). No differences

between task conditions lend support to model 1 (i.e., N = I = C), whereas significant differences between

all task conditions lend support to model 3 (i.e., N[ I[C; see Fig. 1b)
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cLPC1 amplitude was found at Pz in comparison to Fz

(t(44) = 6.02, p\ .001), and the cLPC1 amplitude was

larger for the incongruent and nogo stimuli than the con-

gruent stimuli (t(44) = 3.76, p = .001, and t(44) = 3.05,

p = .004), respectively). Bayesian analyses at Fz found

weak evidence against differences between conditions

(BF10 = .70, p(H|D) = .41).

For the cLPC2 component, the site 9 condition inter-

action was not significant, with significant main effects for

site and condition (Table 3). Paired-samples t-tests showed

that the mean amplitude was larger at Pz than Fz

(t(44) = 2.71, p = .010), and that the cLPC2 amplitude

elicited by the incongruent stimuli was larger than the

congruent stimuli (t(44) = 2.92, p = .006). Bayesian anal-

yses at Fz found evidence against differences between

conditions (BF10 = .11, p(H|D) = .10).

R cluster

The R cluster time window was 50 ms pre-response to

50 ms post-response for the congruent and incongruent

conditions. The interaction and main effect of site reached

significance (Table 3). Paired-samples t-tests found larger

mean rP3 amplitudes in the incongruent than in the con-

gruent condition at Fz (t(44) = 2.67, p = .011), while no

such a difference was apparent at Pz (t(44) = 1.05,

p = .30). Bayesian analyses at Fz also found evidence in

favor of a difference between congruent and incongruent

conditions (BF10 = 4.26, p(H|D) = .81).

Finally, in light of the conspicuous differences in peak

rP3 latency between conditions observed at Pz, a paired-

samples t-test was conducted, which indicated that such

differences were significant (t(44) = 8.93, p\ .001,

Cohen’s d = 1.33).

Brain-behavior correlations

Lastly, Pearson product-moment linear correlations

between RIDE decomposed amplitudes and behavioral

measures (mean RTs, accuracy, and incongruency costs)

were conducted. No correlations reached statistical signif-

icance (following Bonferroni correction). Additionally, in

the light of the conspicuous differences in peak rP3 latency

observed between congruent and incongruent trials, one

final correlation was conducted between within-subjects

differences in mean RT and the peak latency of the rP3

between those conditions. That correlation was statistically

significant (r = .32, p = .033), with the scatterplot dis-

playing a linear relationship (see Fig. 7).

Discussion

The current study aimed to expand upon Barceló and

Cooper’s (2018a) and Brydges and Barceló’s (2018) RIDE

decomposition of target P3-like positivities during cogni-

tive control of task switching, by examining these com-

ponents in a flanker task. Based on our information theory

estimates (Table 1), it was hypothesized that target (con-

gruent and incongruent) and non-target (nogo) trials in the

flanker task would elicit frontal N2 and P3 activity

indexing conflict detection and context updating operations

that could be decomposed into stimulus-locked, interme-

diate, and response-locked sub-components. The ampli-

tudes and scalp topographies of the N2-P3 complex were

expected to be modulated by dynamic trial-by-trial

adjustments in information processing demands, with lar-

ger frontal N2 and P3 amplitudes expected for task con-

ditions posing larger cognitive demands (Fig. 1b; cf. Miller

1956). More specifically, we examined whether evidence

for one, two or three high-order hidden units (or latent

variables) could be identified in our flanker task in line with

a well-known model of prefrontal executive control

(Table 1; Fig. 1a; Miller and Cohen 2001). The results

showed a highly dynamic picture of effects, with a stim-

ulus-locked frontal N2 revealing early sensory conflict

detection and fast categorization of all three trial types,

resulting in subsequent frontal P3-like activity (high-order

context updating) elicited by the highly informative nogo

trials (C cluster) and by the cognitively demanding

Fig. 7 Scatterplot of within-subject difference in peak rP3 latency

(msec; congruent subtracted from incongruent trials) and difference in

mean reaction time (msec; congruent subtracted from incongruent

trials)
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incongruent trials (R cluster). In turn, and as predicted by

model 3 in Fig. 1b, the least informative congruent trials

did not elicit frontal P3-like activity, although all three trial

types did elicit parietally distributed P3-like activity (low-

order context updating), mostly within the C cluster. These

novel findings support the presence of at least three distinct

high-order hidden units momentarily regulating perfor-

mance in our flanker task (Fig. 1), as indexed by split-

second, dynamic information transmission across frontal

and parietal scalp regions. Further, our findings provide the

first evidence that behavioral congruency effects are

directly related to delayed response-locked peak rP3

latencies in incongruent trials (cf. Figs. 6, 7), which in turn

results from accumulative congruency effects observed

earlier in the S- and C-clusters, as is further discussed in

more detail below.

Based on predictions from model 3 in Fig. 1, it was

hypothesized that the nogo and incongruent trials of our

flanker task would require larger degree of cognitive con-

trol and engage more prefrontal resources than the con-

gruent condition, in line with the differential amounts of

contextual information being transmitted by each of those

trial conditions (Fig. 1b; Table 1). Under the assumption

that dynamic trial-by-trial changes in cognitive demands

associated with different flanker stimuli can be modelled as

information transmission through hypothetical high-order

hidden units (Barceló and Cooper 2018b; Friston et al.

2017; Parr et al. 2020), we predicted task differences on the

electrophysiological indexes of conflict detection (frontal

N2) and context updating (fronto-parietal P3) depending on

the putative number of high-order hidden units regulating

performance of this hybrid go/nogo flanker task (Fig. 1a, b;

Table 1; see Supplementary materials). As such, it was

expected that larger amplitudes of the frontal N2 and

fronto-parietal P3 components will be associated with a

larger number of high-order hidden units involved. Our

conventional ERP results were generally consistent with

previous studies, although these necessarily represent a

compound mixture of different component processes. Thus,

we found that the classic P3 was enhanced at Fz for the

highly informative nogo trials compared to congruent and

incongruent trials, and the nogo-P3 was smaller over

parietal regions (Fig. 3), in line with previous research

(e.g., Gajewski and Falkenstein 2013). Both nogo and

incongruent trials elicited larger frontal LPC1 amplitudes

than congruent trials, with incongruent trials eliciting sig-

nificantly larger amplitude at Pz as well, consistent with

previous research examining the LPC and task difficulty

(Brydges et al. 2014). Now, in the light of our novel RIDE

findings, these conventional target-P3 and nogo-P3 effects

can be reinterpreted as a combination of stimulus-locked,

response-locked, and latency-variable P3-like component

processes.

Importantly, our novel RIDE results help clarify the

functional significance of distinct component operations

tracked by the frontal N2 and fronto-parietal P3-like

modulations observed in all three clusters (Folstein and

Van Petten 2008; Kałamała et al. 2018). In line with

Brydges and Barceló’s (2018) findings, the largest P3-like

modulations were captured by the C cluster, which is likely

to index higher-order control operations, such as updating

of high-order response policies given the sensory infor-

mation and probability of the incoming stimuli (i.e., fre-

quent green fish vs. infrequent red fish). Interestingly, the S

cluster captured not only early stimulus-locked peaks (i.e.,

a P2-like peak at both frontal and parietal sites between 140

and 200 ms), but also revealed frontal N2 and parietal P3-

like activity putatively indexing both high- and low-order

transfer of information respectively from early perceptual

conflict detection to context updating triggered by changes

in visual stimulation, since task condition also modulated

the parietal sP3 (i.e., low-order context updating; see

Fig. 4). From the context updating theory of the P3

(Donchin and Coles 1988), this implies that changes in the

perceptual aspects of the environment may trigger context

updating at both high-order (Fz) and low-order (Pz) levels

in the hierarchy of cognitive control, which was the case

for our highly informative nogo and incongruent trials,

respectively, as predicted by model 3 in Fig. 1b. There was

also a visible response-locked P3-like component (rP3)

with maximal parietal scalp distribution, likely reflecting

‘‘context updating’’ operations elicited by changes in motor

or premotor control units associated with trial-by-trial

variability in response selection. Importantly, and consis-

tent with predictions from model 3, the more cognitively

demanding incongruent condition elicited a significantly

larger frontal rP3 and this peaked later over parietal regions

than the easier congruent condition (cf. Brydges and Bar-

celó 2018). This suggests that the low-level S–R mapping

for congruent trials was easier to implement because it was

more probable and thus might have been naturally adopted

as the default stimulus–response mode. In turn, in order to

implement the correct S–R mapping for infrequent incon-

gruent trials, participants must effortfully select the con-

textually isolated central target and then reverse the default

S–R mapping, which presumably delayed the peak latency

of parietal rP3 component downstream. Overall, these

results support the findings of Brydges and Barceló (2018),

in that changes in sensory, motor and sensorimotor levels

of representation in the hierarchy of cognitive control can

all trigger context updating mechanisms that differentially

engage fronto-parietal regions from 220 to 700 ms post-

stimulus onset and beyond, possibly reflecting temporarily

recurrent activation of various nodes across the fronto-

parietal network in those more informative task conditions

engaging larger cognitive demands (i.e., nogo and
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incongruent trials; Bledowski et al. 2004; Duncan 2010;

cf., Johnson and Donchin 1985).

Stimulus-locked activity

In the S cluster, frontal sN2 amplitude was modulated by

task condition (nogo[ congruent[ incongruent; with

nogo being most negative). Bayesian analyses provided

evidence of differences in frontal sN2 amplitude between

all three conditions, implying that conflict detection is a

stimulus-locked process that momentarily involved three

distinct high-order hidden units being held at prefrontal

cortices (cf. model 3 in Fig. 1b), and has been putatively

associated to the anterior cingulate cortex (Botvinick et al.

2004; Carter and van Veen 2007; Fan 2014; van Veen and

Carter 2002). Mean frontal sN2 amplitudes were smaller

for incongruent than congruent trials, an inconsistent result

that could be attributed to our nogo version of the flanker

task, since nogo trials affect the probability of other trials,

and the participant’s overall strategy of conflict resolu-

tion (Kałamała et al. 2018). Therefore, the low probability

of red nogo trials in our version of the flanker task may

have influenced the participant’s overall strategy of conflict

resolution. Such an explanation is supported by our formal

estimation of information transmission between stimuli and

responses (including ‘‘nogo’’ responses) that identify nogo

trials as the most informative trials in our study (Model 3;

Fig. 1b). It should be noted that the information conveyed

by incongruent trials would be larger than that of nogo

trials if these were the most frequent trial condition (i.e.,

C = .25, I = .25; NoGo = .50; see Supplementary materi-

als). Thus, our simple information theory model has

heuristic value and can be used to make testable predictions

to help understand the influence of trial probability on

frontal N2-P3 congruency effects (Folstein and van Petten

2008). That is, the amount of conflict and context (belief)

updating does not only depend on the labels assigned to

the task conditions (i.e., congruent, incongruent, and nogo),

but on the probabilistic structure of the task as can be best

defined through the joint and conditional probabilities

between task events, responses and intervening ‘hidden’

variables (Barceló and Cooper 2018b; Doya and Ishii 2007;

Friston et al. 2017; Parr et al. 2020). In line with this in-

terpretation, reduced frontal N2 in incongruent trials could

be due to a small positive P3-like bump following the

frontal N2 peak in incongruent trials (Fig. 3) that is more

clearly visible in the S-cluster (Fig. 4). We quantified this

positive bump by measuring peak-to-peak N2-P3 ampli-

tudes within 200–300 ms post-stimulus (Folstein and van

Petten 2008). Peak-to-peak N2-P3 amplitudes were largest

for the most informative nogo and incongruent trials, and

smallest for the least informative congruent trials, with no

differences between nogo and incongruent trial

conditions. This small positive peak might signal the

moment when frontal cortex sends a signal downstream to

revert the default congruent S–R mapping in the face of a

highly informative incongruent trial. As a consequence,

larger parietal sP3 amplitudes were elicited by incongruent

trials than either congruent or nogo trials in the S cluster.

This finding suggests that low-order context updating may

be triggered by an infrequent visual target that differen-

tially engages temporo-parietal regions of the fronto-pari-

etal network to anticipate a change in response demands,

thus enhancing parietal sP3 amplitudes on incongruent

trials. Such low-order context updating may index an early

stage of S–R remapping in the incongruent trials ‘‘to con-

trol for incorrect response preparation’’ (Folstein and Van

Petten 2008). This finding suggests a highly dynamic and

context-sensitive functioning of fronto-parietal networks,

with fast split-second fluctuations in the amount of frontal

and parietal resources engaged for processing each trial

type (cf. Barceló and Cooper 2018a; Kieffaber and Hetrick

2005).

Additionally, the fact that the frontal N2 component

elicited by the nogo condition was best captured by the S

cluster rather than the C cluster suggests that what is tra-

ditionally considered the frontal nogo-N2 may largely

reflect conflict detection triggered by stimulus-locked

information transmission across prefrontal cortices (Carter

and Van Veen 2007; Nieuwenhuis et al. 2004; Van Veen

and Carter 2002). Specifically, the neural output of the

frontal N2 may feed forward onto further high-order con-

text updating operations (frontal P3), and even further

down in the hierarchy of control into response inhibition

and response selection operations at posterior association

cortices (i.e., low-order context-updating; Fig. 1a), which

could thus explain the modulations of subsequent pro-

cessing stages captured by the latency variable and

response-locked P3-like positivities (Botvinick et al. 2004;

Gajewski et al. 2008). It should be acknowledged, how-

ever, that the frontal N2 component measured here could

also potentially reflect response inhibition processes (e.g.,

Falkenstein et al. 1999), as opposed to conflict detection

(Folstein and Van Petten 2008; Gratton et al. 2018). Yet, a

compatible alternative is that our reversed congruency

frontal N2 effect was a consequence of our unusual task

design, using dissimilar 2:1 ratios of congruent to incon-

gruent trials. Admittedly, this is a very unusual ratio, which

might have led subjects to adopt a congruent mode of

responding as a default. Then, in incongruent trials, sub-

jects rapidly switched their response policies, resulting in

the inhibition of the congruent rule rather than the inhibi-

tion of a congruent response. Indeed, our unusual results

agree with a recent flanker task study showing reduced

frontal N2 and enhanced frontal P3 during ‘‘rule inhibi-

tion’’, as compared to ‘‘response inhibition’’ or ‘‘flanker
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inhibition’’ (Xie et al. 2017). It should also be noted that

the ERP effects from task relevance and objective infor-

mation are not well distinguished. One solution to distin-

guish these two factors is to use more probabilistic

combinations to systematically reveal the impact of both

(see Duncan-Johnson and Donchin 1977, for an example).

Latency-variable activity

In the central cluster, the cP3 peak (300–400 ms; the typ-

ical latency of classic P3 potentials) was modulated by

high-order context updating, implying that the latency-

variable cP3 was associated with updating of higher-order

hidden units. Specifically, the Bayesian analyses on the cP3

component revealed the transient engagement of two high-

order hidden units, one for updating to infrequent nogo S–

R links and one for updating to target S–R links (i.e., thus

supporting model 2 in Fig. 1b; Table 4). This was consis-

tent with the frontal nogo cP3 to highly informative nogo

trials requiring upholding a response, together with the

absence of any frontal cP3 activity to the less informative

target trials requiring a motor response (congruent and

incongruent trials). In contrast, the cLPC1 and cLPC2 were

not modulated by high-order context updating (i.e., there

was moderate Bayesian evidence in favor of only one high-

order hidden unit from Fz data, therefore supporting model

1 in Fig. 1b). Thus, both nogo and incongruent trials eli-

cited greater cLPC1 amplitudes than congruent trials over

parietal regions, whereas incongruent trials continued

eliciting greater parietal amplitudes than congruent trials in

the cLPC2 time window. These congruency effects over

parietal regions in the non-phase locked C cluster suggest

that cognitive control is a highly dynamic process, whereby

once conflict is detected at frontal cortical regions (i.e.,

indexed by the frontal sN2 component), then context

updating proceeds, first at high-order frontal regions (i.e.,

the nogo-cP3), and then later at low-order temporo-parietal

association cortices (cLPC1, cLPC2) to update and recon-

figure the S–R mappings needed to adaptively deal with

different response demands. These findings suggest that the

latency-variable components elicited in the C cluster cap-

ture several functionally distinct time-varying cognitive

control operations resulting in subtly different P3-like scalp

topographies as required by dynamic changes in cognitive

demands (cf. Barceló and Cooper 2018a; Brydges and

Barceló 2018).

Response-locked activity

In the response-locked cluster, a parietal P3-like positivity

(rP3) showed a similar mean amplitude for congruent and

incongruent trials, attesting for similar low-level context

updating operations in both trial conditions. Most

interestingly, though, there was an 80 ms difference in

peak rP3 latency between conditions, suggesting that low-

level context updating for incongruent trials was delayed

regarding the comparatively easier congruent trials. This

difference in parietal peak rP3 latency significantly corre-

lated with behavioral reaction times, and is also consistent

with predictions from model 3 in Fig. 1b, whereby only the

highly informative incongruent trials demanding a reversal

in S–R mappings elicited a frontal rP3 (high-order context

updating) that influenced subsequent processes down-

stream by delaying the parietal rP3, an index of low-order

S–R remapping (low-order context updating). Note that

these more nuanced context updating operations are all

response-locked and would thus remain hidden in con-

ventional ERP waveforms (Fig. 3). This finding is similar

to that reported by Brydges and Barceló (2018), whereby

only the most cognitively demanding target trials imme-

diately following a switch cue elicited additional frontal

rP3 positivities, in spite of using identical visual displays as

in target trials following a repeat cue. Brydges and Barceló

(2018) argued that the extra cognitive demands required to

categorize first target trials after a switch cue were con-

tingent to response demands, and thus linked to the

updating of low-order S–R mappings in a particular target

trial. The present rP3 results are consistent with the

increased response conflict in incongruent flanker trials,

whereby the updating of low-level S–R mappings arguably

involves concurrent selection and suppression of appro-

priate and inappropriate S–R links, respectively (i.e.,

stopping a default congruent response policy and reversing

to an incongruent response policy; cf. Friston, et al. 2017).

Thus, participants may adopt a default (or ‘prior’) con-

gruent green-go response policy to maximize their behav-

ioral efficiency in the most frequent and least informative

congruent trials. However, when confronted with a rela-

tively surprising incongruent green flanker stimulus, par-

ticipants had to remap their low-level S–R links as part of

the ongoing high-order hidden unit, which results in a

frontal rP3 followed by a delayed parietal rP3 in incon-

gruent trials indexing the S–R remapping. Relatedly, Ver-

leger et al. (2016) found that rP3 amplitude occurring at

parietal sites approximately 40 ms pre-response was posi-

tively associated with task difficulty, and also that the most

cognitively demanding trials (a rare response in a two-

choice task) resulted in an additional fronto-central posi-

tivity occurring approximately 90 ms pre-response, thus

generally consistent with the rP3 positivities observed in

the current study.

It should briefly be acknowledged that RIDE is a rela-

tively novel technique for obtaining independent P3 sub-

components in comparison to established principal

components analysis (PCA) techniques (e.g., Dien et al.

2004; Rushby et al. 2005; Spencer et al. 1999). The main
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advantage of the new RIDE technique compared to con-

ventional PCA methods is that it offers a novel and theory-

guided decomposition of the P3 and LPC into stimulus-,

response-locked and latency-variable P3-like subcompo-

nents (Ouyang et al. 2017). Thus, the rationale for using

RIDE rather than PCA was to revise the context updating

hypothesis of P3 elicitation in the light of the new active

Bayesian inference framework together with new evidence

suggesting that ‘the context’ to be updated consists of not

only the sensory units of stimulation, but also associated

motor units, and intermediate high-order hidden units, all

of which may need to be dynamically updated on a trial by

trial basis (cf., Brydges and Barceló 2018; Friston et al.

2017; Parr et al. 2020). Indeed, the results show function-

ally distinct P3-like subcomponents in all the S-, R- and

C-clusters, and thus offer a novel interpretative framework

for the conventional context updating hypothesis of P3

elicitation in line with modern views from the Bayesian

brain hypothesis.

Limitations

The current study did have some limitations. First, it should

be acknowledged that there is a degree of subjectivity in

the selection of latency windows for the S-, C-, and

R-clusters, which can potentially affect results. In the

current study, the latency windows of the S- and C-clusters

did not greatly overlap, which limits the likelihood of a

latency-variable N2 component to be observed (although a

small stimulus-locked parietal positivity modulation was

observed). Previous research that decomposed the N2

component has been mixed with regards to observing an

N2 component in the C-cluster (e.g., Chmielewski et al.

2018; Ouyang et al. 2013). Additionally, some observed

peaks were not picked up well by the selected time win-

dows (e.g., the sN2 peak at Pz). This is likely to be partly

due to the time windows being chosen based on previous

research and the ERP data (following the guidelines out-

lined by Keil et al. 2014), after which the RIDE decom-

position procedure adjusted the latency of the peaks within

each trial. Given problems with and recommendations to

avoid using flexibility in data analysis (e.g., Carp 2012a, b;

Luck and Gaspelin 2017; Poldrack et al. 2017; Simmons

et al. 2011), it was agreed that adjusting these time win-

dows would misrepresent the study and could affect the

replicability of the findings. Regardless, future researchers

could employ more data-driven approaches to identifica-

tion of time windows, and/or preregister their analysis plan

prior to data collection (Nosek et al. 2018).

Conclusions

The current study examined whether one, two, or three

high-order hidden units could account for the pattern of

frontal N2 and P3 potentials in go/nogo version of a flanker

task. This question was examined under the light of novel

findings that conventional N2 and P3 ERP components can

be decomposed into stimulus-locked, latency variable, and

response-locked component processes. Overall, the results

from the RIDE analyses are consistent with previous

findings about a multiplicity of functionally distinct target

P3-like subcomponents (Barcelo and Cooper 2018a, b;

Brydges and Barceló 2018), and are an extension of (yet

consistent with) seminal early research investigating

potential distinctions between the P3a, P3b, and LPC

components (e.g., Courchesne et al. 1975; Dien et al. 2004;

Donchin and Coles 1988; Johnson and Donchin 1985;

Pritchard 1981; Snyder and Hillyard 1976; Spencer et al.

1999; Squires et al. 1975). Altogether, our RIDE results

offer a highly dynamic picture whereby one, two, and at

least three high-order hidden frontal units were inferred to

be engaged at different time windows (as indexed by dif-

ferent ERP/RIDE subcomponents) to account for perfor-

mance on the flanker task. These positivities overlay

fronto-parietal scalp regions, with the amount of frontal

recruitment depending on dynamic split-second changes in

transmitted information (i.e., cognitive load; Miller 1956;

Fan 2014; Zénon et al. 2019), supporting Koechlin and

Summerfield’s (2007) rostro-caudal axis of cognitive con-

trol and Miller and Cohen’s (2001) integrative theory of

prefrontal function. In conclusion, this study provides the

first evidence that behavioral congruency effects relate to

delayed neural information processing indexed by

response-locked P3-like potentials overlying fronto-pari-

etal regions (cf., R-cluster; Figs. 6, 7). Further, these delays

in response-locked neural activity resulted from the accu-

mulative effect of earlier and distinct RIDE congruency

effects starting in the S- and C-clusters (that is, involving

both stimulus-locked and non-phase locked neural activity

overlying frontal and parietal regions). Finally, these

findings show that successful conflict detection and context

updating are associated with a distinct combination of

stimulus-locked, response-locked and latency variably

electrophysiological processes putatively reflecting split-

second neural dynamics across a cingulo-fronto-parietal

network for cognitive control (Botvinick et al. 2004;

Duncan 2010; Fan 2014; Niendam et al. 2012).
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