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Flexible control of cognition bestows a remarkable adaptability to a broad range of contexts. While cognitive
control is known to rely on frontoparietal neural architecture to achieve this flexibility, the neural mechanisms
that allow such adaptability to context are poorly understood. In the current study, we quantified contextual
demands on the cognitive control system via a priori estimation of information across three tasks varying in dif-
ficulty (oddball, go/nogo, and switch tasks) and compared neural responses across these different contexts. We
report evidence of the involvement of multiple frequency bands during preparation and implementation of
cognitive control. Specifically, a common frontoparietal delta and a central alpha process corresponded to rule
implementation and motor response respectively. Interestingly, we found evidence of a frontal theta signature
that was sensitive to increasing amounts of information and a posterior parietal alpha process only seen during
anticipatory rule updating. Importantly, these neural signatures of context processing match proposed frontal
hierarchies of control and together provide novel evidence of a complex interplay of multiple frequency bands
underpinning flexible, contextually sensitive cognition.
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Introduction

Goal-directed control of thoughts and behaviors is a hallmark offlex-
ible human cognition. This cognitive control is typically employed to
facilitate information propagation between goal/task-relevant regions
of the cortex, operating over various temporal periods. For instance,
Braver (2012) distinguishes between anticipatory, sustained proactive
control processes that serve to prepare the system for an upcoming
need for goal-appropriate control of behavior and stimulus-driven,
reactive control processes that are transiently recruited on a needs
basis. Information processing associated with cognitive control is
known to rely on a complex, multifaceted, frontoparietal architecture
linking key hubs in medial and lateral prefrontal cortex with posterior
parietal and subcortical regions (Cole and Schneider, 2007; Corbetta
and Shulman, 2002; Dosenbach et al., 2008).

Despite extensive evidence for the existence of this cognitive control
network, the neuralmechanisms that operate to achieve flexible control
remain incompletely understood. In part, this is due to the fact that
the functional imaging techniques (e.g., functional magnetic resonance
imaging; fMRI) that have been employed to characterize the structure
logy, University of the Balearic
lorca, Spain.
of these frontoparietal control networks have limited temporal resolu-
tion, sampling neural processes in timescales that far exceed the sub-
second time scale of many cognitive control processes. By contrast,
electroencephalography (EEG) has excellent temporal resolution, mak-
ing it an important tool to study the functional properties and fast
temporal dynamics of cognitive and neural processes.

Event-related potentials (ERPs) are extracted from the EEG by aver-
aging across multiple repetitions of the same trial type. A number of
frontal ERP negative components have been associated with control
processes. These frontal negativities are typically elicited on trials that
require the implementation of reactive control, for instance, after
response feedback of an incorrect response or during conflict detection
(Bartholow et al., 2005; Folstein and Van Petten, 2008; Olvet and
Hajcak, 2008), and are probably generated in the anterior/medial
cingulate cortex (Cohen et al., 2008; Wang et al., 2005). Further, these
reactive control ERP components are associated with specific frequency
spectra of the EEG. In particular, low frequency theta (4–7 Hz) oscilla-
tions are typically increased in the time range of these frontal negativ-
ities (see Cavanagh and Frank, 2014), suggesting that these ERP
components are part of an underlying low frequency response generat-
ed during reactive control (Luu et al., 2004; Trujillo and Allen, 2007).
The ubiquitous parietal positive ERP component, the P300, is reliably
elicited when the trial requires context updating (for review see Polich,
2007) and is commonly associatedwithdelta (0.5–4Hz) power responses
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during response inhibition and novelty processing (Başar-Eroglu et al.,
1992; Harper et al., 2014; Knyazev et al., 2008; Prada et al., 2014;
Qassimet al., 2013). These reactive control indices are invoked in standard
conflict paradigms (i.e., go/no go, stop-signal, flanker tasks), which all rely
on conflict resolution processes.

While ERP components and EEG frequency responses associated
with reactive cognitive control are fairly well established, the corre-
sponding mechanisms for proactive control are less well understood.
The situational demands that characterize theneed for proactive control
are more varied, and the little work that has explored neural mecha-
nisms of proactive processes has produced a less consistent set of
results.

One paradigm that is particularly suited for examining proactive
control processes is the task-cueing paradigm, where participants can
utilize cue information to prepare for the required task on the upcoming
target. ERPs elicited in the cue-target interval typically show a switch-
related positivity; a larger parietal positivity for cues that indicate that
the target will require a switch in task rather than a repeat of the
same task completed on the previous trial (e.g., Barceló et al., 2006;
Jost et al., 2008; Karayanidis et al., 2003; Karayanidis et al., 2009;
Nicholson et al., 2005; Periáñez and Barceló, 2009; for reviews, see
Karayanidis and Jamadar, 2014; Karayanidis et al., 2010). However,
the frequency signature of this anticipatory switch-positivity is not
well defined. Studies have reported multiple spectral indices of proac-
tive control during task switching, including bilateral parietal increases
in alpha (8–14 Hz; Foxe et al., 2014; Mansfield et al., 2012); increased
theta in frontal (Cunillera et al., 2012), centroparietal (Cooper et al.,
2015a, see SupplementaryMaterials; Sauseng et al., 2006), and occipital
(Gladwin and de Jong, 2005) sites and centroparietal increases in delta
(Prada et al., 2014).

While some of these discrepancies between task-switching studies
may be attributed to differences in the time-frequency extraction proce-
dures used (e.g., frequency resolution of wavelets in Fourier transforms,
“pure” vs. task-referenced baselines or reference montages used), such
methodological differences do not typically impact on the pattern of ef-
fects reported in other paradigms that utilize reactive control processes.
For instance, oddball, go/nogo, and stop-signal tasks are all associated
with delta and theta frequency responses (Harper et al., 2014;
Lavallee et al., 2014). Given that such paradigms all rely on common
motor/inhibition processes, it is likely that common cognitive processes
are associated with distinct neural signatures in the frequency domain.
Therefore, the question remains: what are the specific frequency signa-
tures of well-established anticipatory ERP components in the proactive
control of task switching?

This question has remained elusive because anticipatory processes
in task switching are contextually sensitive, which results in specific
neural signatures emerging depending on the particular attributes
of the paradigm used. According to Braver (2012), the particular com-
bination of “situational factors” that are active at any given moment
bias toward the implementation of proactive or reactive control. For in-
stance, if sufficient information is provided prior to target onset regard-
ing the demands of the upcoming goal, the control system can utilize
proactive processes in an anticipatory manner and facilitate perfor-
mance. These factors have been seen to affect both task-switching
performance and ERPs. For instance, during task switching, the longer
the cue-target interval, the greater the opportunity to prepare to switch
task and the lower the switch cost (i.e., switch-repeat performance;
e.g., Lavric et al., 2008; Nessler et al., 2012; Nicholson et al., 2006). How-
ever, other factors can also affect opportunity for or choice to activate
control proactively; for instance, increasing the probability of switch
trials also influences behavioral performance and switch-related ERPs
(e.g., Monsell and Mizon, 2006). Thus, subtle differences in the context
within which the paradigm is situated can substantially affect the
cognitive control processes that are invoked and, as indicated in the
above examples, can result in differences in neural responses and
behavioral performance. Importantly, paradigms that rely purely on
reactive control are probably less susceptible to these contextual influ-
ences and hence elicit more consistent neural responses than those
that require proactive control.

To date, the oscillatory patterns of activity associated with such con-
textual influences on cognitive control in humans remain to be deter-
mined. One way to quantify contextual influences on cognitive control
is by using information theory, wherein task properties including
stimulus-level interference, episodic demands, and stimulus probabili-
ties can be assigned binary digit values or bits (cf. Attneave, 1959;
Koechlin and Summerfield, 2007). In its purest form, information can
be measured simply by counting the number of bits in a signal. For
example, in the two arrays (i) 101111 and (ii) 100010, array i has 5
bits of informationwhereas array iihas only 2 (i.e., counting the number
of ones present in each array). These information estimates translate
into the mean and joint probabilities of task events often reported in
experimental paradigms. Reducing stimulus properties into bits of
information has provided nuanced approaches that can account for con-
textual demands in tasks with remarkable success (Barceló and Knight,
2007; Koechlin and Summerfield, 2007). These approaches have been
successfully applied to cognitive control paradigms (e.g., Fan et al.,
2008; Mackie et al., 2013), including task switching (Barceló et al.,
2008; Cooper et al., 2015b; Kopp and Lange, 2013), to highlight the
fact that the greater the level of information the greater the need for
cognitive control.

Likewise, Koechlin and Summerfield (2007) propose that increas-
ingly anterior portions of the prefrontal cortex are engaged in process-
ing information associated with more complex information, providing
a framework in which to link cognitive control architecture to contex-
tual influences on the control system. That is, according to Koechlin
and Summerfield, distinct regions of the prefrontal cortex are involved
in subroutines of cognitive control processes. Specifically, posterior
regions of the prefrontal cortex are associated with implementing goal
and behaviorally relevant responses based on stimulus–response map-
pings (i.e., sensorimotor control). More anterior portions of the pre-
frontal cortex are involved in adjustments and implementations of
stimulus–response mappings due to (a) immediate situational de-
mands (i.e., contextual control) and (b) updating due to past events or
temporal contingencies (i.e., episodic control). Thus, quantifying the
amount of information present during tasks can provide a common
language to successfully communicate contextual demands across
tasks and experiments.

Given that context is a general term applied to numerous cogni-
tive processes, here we operationalize context as summated infor-
mation across multiple levels of the cognitive control hierarchy
(i.e., sensorimotor, contextual, and episodic control; Koechlin and
Summerfield, 2007). By doing so, we consider context as the particular
stimulus–response mappings that can vary both between conditions
and across time. In the current study, we aimed to identify contextually
sensitive oscillatory indices at various levels of the cognitive control
hierarchy. To do so, we manipulated the context in which stimuli
were presented via a priori estimates of information over three cogni-
tive control tasks and compared EEG power during these contexts.
We did this by defining three common cognitive control tasks, oddball,
go/nogo, and task switching, with an identical set of stimuli. Thus, while
the sensory input remained identical for all three tasks, the contextual
information provided by the stimuli varied as a function of the specific
task demands and the corresponding sensorimotor information trans-
mitted between stimuli and associated responses (see Materials and
Methods). Therefore, any differences in electrophysiological and behav-
ioral measures can only be attributed to different cognitive control pro-
cesses activated under the different contexts.

Based on the notion that distinct regions of the prefrontal cortex
respond preferentially to particular contextually sensitive information
(Koechlin and Summerfield, 2007), we expected oscillatory activity to
differ within a frontal hub of electrodes with changing task and tempo-
ral contexts. Given previous evidence that EEG delta and theta power
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increases during conflict or uncertain trials in oddball, go/nogo, and
task-switching paradigms when studied independently, we predicted
that “target” stimuli that carry similar amounts of sensorimotor infor-
mation would be associated with a similar pattern of increased power
in these frequency bands, regardless of their task context. That is, targets
conveying similar sensorimotor information for response selection in
oddball, go, and switch tasks would be associated with common neural
frequency responses, regardless of their precise task context. By con-
trast, stimuli whose sensorimotor information content varied as a func-
tion of their temporal context (whether they are targets, distracters, or
cueing events) would have distinct oscillatory power signatures. That
is, identical stimuli holding different temporal contingencies with
contextually related goal-directed actions would have corresponding
differences in EEG power. We computed transmitted sensorimotor in-
formation between stimuli and responses (i.e., the inter-dependence
of a stimulus–response pair or “input–output correlations”; Miller,
1956) as a metric to estimate even subtle differences in cognitive de-
mands under changing task and temporal contexts. For instance, grey
Gabor patches differed in processing requirements as a function of
their task context and thus were susceptible to such contextually sensi-
tive changes in power. In particular, grey Gabor patches could serve as
an irrelevant non-target distractor (oddball), a nogo, withhold signal
(go/nogo) relying on reactive cognitive control or as an anticipatory cue
(switch) utilizing proactive control processes. Given the extensive litera-
ture on low frequency oscillations in cognitive control, we expected
these context-sensitive power changes to occur in the delta and theta
ranges (i.e., Arnal andGiraud, 2012;Harper et al., 2014; Prada et al., 2014).

Materials and methods

Participants

Thirty-one participants (25 female, 21.8 ± 2.7 years) took part in
the current study and received course credit for their participation. All
participants were graduate or postgraduate students at the University
of the Balearic Islands with normal or corrected-to-normal vision and
reported no history of neurological or psychiatric disorders. Informed
consent was obtained from all participants and experimental proce-
dures and behavioral testing was undertaken in accordance with the
Declaration of Helsinki and with the approval by the ethics committee
of the university.

Stimuli and procedures

Participantswere seated in a dimly lit, sound attenuated, and electri-
cally shielded room at a viewing distance of 150 cm from a 27-in. video
LCD monitor (800 × 600 at 75 Hz). Stimuli were presented against
a grey background (2.85 cd/m2) at a visual angle of 6.5° to the left
or right of a central fixation cross with 0.5° × 0.5° of visual angle.1 The
central fixation cross remained continuously present throughout the
experiment. Stimuli consisted of four equally probable (p = 0.21)
coloredGabor patches (red or blue)with 4 or 10 cpd horizontal gratings
(25% contrast, 1° visual angle, 3.5 cd/m2) and two infrequent (p=0.08)
grey Gabor patches (oriented vertically or horizontally, 2 cpd, 25%
contrast, 1° visual angle, 3.5 cd/m2). Participants responded via a
hand-held response pad with their left or right index finger.

A test sequence including 976 trials of colored and grey Gabor
patches was semi-randomly generated offline, with the constraint that
consecutive grey Gabor patches were separated by four to eight colored
patches. This test sequence was divided into eight blocks to allow for
1 Stimuli were presented to the left or right of the fixation cross in order to assess
hemispatial attentional deficits in unilateral lesion patients (cf., Barceló and Knight,
2007). Pilot data suggested this peripheral display did not significantly modulate electro-
physiological indices of task switching when compared to a traditional, central display.
brief self-paced breaks approximately every five minutes. Each trial
consisted of a Gabor patch presented for 100 ms in the left or the right
visual hemifield. On designated target trials, participants had to respond
within a maximum of 1200 ms after stimulus onset. Participants were
instructed to fixate their gaze on the central cross and avoid shifting
their eye gaze to the lateralized Gabor patches. Instructions emphasized
both response speed and accuracy. All error trials (i.e., incorrect, late
responses, and false alarms, i.e., button presses to non-target grey
gratings) were followed by visual feedback (“incorrect” or “too late”
displayed in Spanish), and the following trial was delayed by 500 ms
to help subjects keep track of the correct rule. As a consequence, stimu-
lus onset asynchrony (SOA)was 1900 and 2400ms on correct and error
trials, respectively. Analyses were based on trials that formed a correct
sequence (i.e., grey Gabor and subsequent three color Gabor targets
were all correct). The stimulus display and behavioral response record-
ing were carried out using Presentation® software (Neurobehavioral
Systems Inc., Albany, CA).

Each participant was presented with a pseudorandomly generated
test sequence that was repeated three times with three different task
instructions, which defined the oddball, go/nogo, and switch tasks.
Thus, the three tasks were yoked for stimuli and trial runs but involved
different cognitive and response demands (Fig. 1). These tasks were
administered in counterbalanced order between participants to control
for inadvertent order effects.

The oddball task (Fig. 1A) served as a “control” for both switch and
go/nogo tasks, having an identical stimulus context and equivalent per-
ceptual demands, but with different response demands. Specifically, a
response was required only to red Gabor stimuli, which were defined
as oddball targets. All other stimuli did not require a response. The go/
nogo task (Fig. 1B) served as a “control” condition for the switch task.
It involved an identical stimulus sequence and again participants
responded only to the colored Gabors. However, importantly, here the
grey Gabors had no predictive significance regarding the task to be per-
formed. Rather, they were defined as nogo stimuli and participants
were asked to withhold their response. Participants completed color
classification across the entire sequence. In essence, this task is very
similar to a single-task block, except that the intermittent “cues” are
not mapped to any task. The task involved responding to the same
targets, an identical stimulus sequence, and similar response demands
as the switching task. These S-R mappings were the same as the color
condition in the switch task. The switch task (Fig. 1C) was a variant of
the intermittent-instruction paradigm (Monsell, 2003; Rushworth
et al., 2002). The grey Gabor stimuli were the cues, indicating whether
to switch or repeat task. The colored Gabor stimuli were the targets
and required a left or right hand response based on either the color
(blue or red grating) or the grating spatial frequency (thick or thin
grating). Hence, in this task, the direction of the grating in the grey
Gabor (cue) instructed participants whether to switch task or repeat
the task they had been completing on the previous set of trials. The
relation between grey grating orientation and instruction was counter-
balanced between participants. Before the switch task, a short block of
74 test trials was administered to ensure that participants understood
task instructions. Together, all stimuli, in all contexts, relied on reactive
control processes. However, in the switch task, the grey Gabor afforded
the opportunity for task preparation and thus specifically relied on
proactive cognitive control.

Electrophysiological recordings

Continuous EEG data (0.05–100 Hz band-pass) were collected
using SynAmps RT amplifiers (NeuroScan, TX, USA) from 60 scalp sites
using tin electrodes mounted on an elastic cap (Synamp2 Quikcap,
Compumedics, TX) at a sampling rate of 500 Hz. EEG electrodes were
placed following the extended 10–20 position system (Fp1, Fp2, AF7,
AF3, AFz, AF4, AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, FC1,
FCz, FC2, FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5, CP3,



Fig. 1. Task design, stimulus material and stimulus–response mappings. All three tasks consisted of the same sequence of frequent colored gratings with semi-randomly interspersed
infrequent grey gratings. (A) The oddball task involved one-forced choice response (i.e., “press a button for red patches”). Participants were explicitly instructed not to respond to the
grey Gabor patches. (B) The go/nogo task consisted of two-forced response choices (“press button 1 for red patches, and button 2 for blue patches”. (C) In the switch task, vertical and
horizontal grey gratings instructed participants to switch and repeat the previous S-Rmapping, respectively. Hypothetical task-set information and S-Rmappings for correct performance
are also shown for each task. Task demandswere manipulated by (1) varying the amount of task-set information to be handled inworkingmemory (oddball vs. go/nogo task) and (2) by
varying the type of contextual information conveyed by the grey gratings for anticipatory updating of active S-R mappings (go/nogo vs. switch task; see Fig. 2).

2 In order to confirm that differences in thenumber of trials contributing to different tri-
al types did not inadvertently affect our findings, we examined whether observed power
was correlated with trial counts. No significant effects were found, indicating that differ-
ences between conditions are not due to differences in trial number.
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CP1, CPz, CP2, CP4, CP6, TP8, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO7, PO3,
POz, PO4, PO8, O1, Oz, O2) and were referenced to the left mastoid.
Four additional electrodes were placed above and below the left eye
and on the outer canthi of both eyes to monitor blinks and eye move-
ments. Sensor impedances were kept below 10 kΩ.

EEG analyses

Initial warm-up trials and trials within a sequence where an incor-
rect response was generated were excluded from behavioral and EEG
analyses. Noisy trials, as determined below, were also excluded from
analyses. Further, since behavioral costs in intermittently instructed
paradigms typically reach an asymptote in later trials (Monsell, 2003;
Rushworth et al., 2002), and we are interested in exploring contextual
influences on control, analyses were restricted to grey Gabor patches
and colored Gabor patches in target positions one and three after a
grey patch (herein referred to as target 1 and target 3, respectively).
These stimuli were specific for each trial type. Grey Gabor patches
were distractor non-targets for the oddball task, nogo trials for the go/
nogo task, and repeat/switch cues for switch task. For the oddball task,
red Gabor patches were targets requiring a response while blue Gabor
patches were also distractor non-targets. For the go/nogo and switch
tasks, both red and blueGabor patcheswere targets requiring a different
motor response.

EEG data were processed using MATLAB (Mathworks, Navick, MA)
through a pipeline utilizing EEGLab (Delorme and Makeig, 2004), CSD
Toolbox (Kayser and Tenke, 2006), and in-house functions. Preprocess-
ing was performed in EEGLab as follows. EEG data were re-referenced
offline to linked mastoids and band-pass filtered (0.1–30 Hz; zero-
phase, Hamming windowed sinc FIR), using the EEGLab pop_eegfiltnew
function. Epochs for each stimulus typewere extracted from−1600ms
to +3,600 ms with respect to stimulus onset. Trials were inspected for
non-stereotyped artifacts (e.g., cable movement, swallowing) and
removed if present, which amounted to 4.42% (±4.54 SD) of trials.
Non-stereotyped artifacts (includingblinks, eyemovements andmuscle
artifacts) were deleted via independent components analysis (ICA)
using the extended infomax algorithm (Bell and Sejnowski, 1995). The
average number of ICA components removed was 3.87 (±1.99 SD).
The remaining components were then projected back into electrode
space. The average number of trials for the go/nogo task was 126
(±16 SD) nogo, 130 (±16) target 1 go, and 122.2 (±15.6) target 3
go; for the oddball task, 73.5 (±4.9) red target 1, 75.3 (±5.4) red target
3, 142.8 (±9.6) grey distractor, 69.5 (±8.4) blue distractor target 1, and
64.5 (±7.2) blue distractor target 3; for the switch task, 28.4 (±4.6)
repeat cues, 30.7 (±4.8) repeat target 1, 30.9 (±4.8) repeat target 3,
31.4 (±3.7) switch cues, 31.1 (±3.7) switch target 1 and 31.2 (±3.6)
switch target 3. Note, for the switch task, we only analyzed trials from
the color rule in order to limit any influence of task rule asymmetries
on frequency responses and split horizontal (repeat) and vertical
(switch) orientations resulting in trial counts that are approximately
half of that for other conditions.2 Finally, EEG data were transformed
using a surface Laplacian filter (smoothing = 10−5, number of
iterations = 10, spherical spline order = 4) to reduce volume conduc-
tion effects in EEG electrode space (CSD Toolbox; Kayser and Tenke,
2006).

Power analyses
Time-frequency analyses were performed on the surface Laplacian

filtered data (cf. Cooper et al., 2015a). Power was computed for each
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grey, target 1, and target 3 Gabor for each of the three tasks (oddball, go/
nogo, and switch) by averaging all decomposed single-trial time-
frequency representations for each Gabor patch. Single-trial time-
frequency representations were obtained via complex Morlet wavelet
convolution for 80 logarithmically spaced frequencies ranging from 2
to 30 Hzwith logarithmically spaced tapers ranging from 3 to 14 cycles.
Resulting power values were normalized with a decibel (dB) transfor-
mation (10 log10(power/baseline)), where the baseline was defined as
the average power over a 500 to 100 ms interval pre-stimulus onset.

Information theory estimations

We used an information theoretical approach to quantify contextual
information, whereby a priori estimations of the mutual information
among sensory events, motor responses, and intermediate sensorimo-
tor operations were used to guide interpretation of EEG power results
(cf. Barceló et al., 2008). For example, across all tasks, the same stimuli
were used and thus stimulus-specific information is constant across
contexts. By contrast, the oddball task set only contained a single
stimulus–response mapping (i.e., button press to red targets) and thus
had lower sensorimotor information than go/switch tasks that required
two stimulus–response mappings based on the color of the target
Gabor. In doing so, we followed the original recommendations by
Miller (1956) for estimating the amount of information transmitted
between contextually related stimuli and responses (or input–output
correlations) along a putative hierarchy of sensorimotor control pro-
cesses (Miller and Cohen, 2001). While stimuli were identical, context
was quantified in terms of overall stimulus and response information
entropies and information transmitted between contextually related
visual targets, non-targets, and motor responses along a hypothesized
hierarchy of sensorimotor control processes (Koechlin and
Summerfield, 2007). For instance, while grey Gaborswere visually iden-
tical in all tasks and appeared with identical presentation probability,
the type of information provided varied. Oddball grey Gabors transmit-
ted the lowest sensorimotor information for response selection, and no
episodic information given that the same task rule was used for all odd-
ball targets and non-target distractors. Alternatively, increased sensori-
motor information was conveyed by nogo grey Gabors as these stimuli
were associated with less frequent nogo responses (r0) compared to
the oddball task. Again, no episodic information can be assumed for
nogo grey Gabors given that the same task rule was consistently used
across all trials. Finally, similar sensorimotor information was transmit-
ted by all grey Gabors in the switch task, plus an additional amount of
episodic information was transmitted only by “switch” grey Gabors, as
these served as anticipatory cues requiring access to episodic task
Fig. 2. A priori estimations of transmitted information, I(si, rj), between stimuli and responses as
the three tasks (or input–output correlations, after Miller, 1956). The dotted line marks the theo
themodel's predictions, targets conveyed the same information for response selection across al
in the oddball, go/nogo, and switch tasks. The information transmitted from stimuli to response
{s1, s2, s3, s5, s6}, and associated responses, R = {r0, r1, r2}, in our three tasks (cf., Attneave, 1959
rules. Note that these information estimates can be seen as a more for-
mal and accurate way to translate into bits themean and joint probabil-
ities of task events, as is common practice in most experimental
psychology studies. For instance, instead of saying that a grey Gabor
distractor occurs with an overall mean probability of p=0.08 through-
out our oddball task, we chose to quantify this in bits by saying that the
sensory entropy of this distractor is H(s1) = −0.08 ∙ log2 0.08 = 0.29
bits. A similar formalism was used to quantify in bits the relative prob-
abilities of specific sensorimotor processes, such as the joint probability
of specific si–rj mappings using the concept of transmitted information:
I(si, rj)= log2 p(si, rj)− log2 p(si)− log2 p(r2). Fig. 2 presents a summary
of these information-theoretic estimations; for a technical description
see the Supplementary materials.

Data analyses

EEG power and behavioral analyses were performed on targets 1
and 3 for each task (oddball, go/nogo, and switch) and grey Gabor
patches, which served as distractors, nogo, or repeat/switch cues for
oddball, go/nogo, and switch tasks respectively. Note, for go/nogo and
switch tasks, red and blue Gabor patches were always targets. For
the oddball task, blue Gabor patches were non-target distractors that
did not require a response and so their separation in power analyses
was deliberate to distinguish between colored Gabor patches that
were associated with a motor response and those that were not. RT
and accuracy behavioral data were analyzed for targets that generated
a response (i.e., target 1 and target 3 for all except non-target distractors
in the oddball task). Behavioral analyses were undertaken via a 4 (TAR-
GET TYPE; oddball, go, repeat, switch) × 2 (POSITION; target 1, target
3) repeated-measures ANOVA in SPSS 23 (IBM). Bonferroni correction
was applied to planned comparisons between target types (i.e., oddball
vs. go, repeat and switch; go vs. repeat and switch and repeat vs. switch)
to control for Type I errors (.05/6 = .008).

For EEG power analyses, we report condition-averaged time-
frequency results for grey Gabors, target 1, and target 3 separately at a
representative midfrontal electrode cluster (i.e., FC1, FCz, and FC2).
This cluster was chosen based on previous work, suggesting delta and
theta responses have a frontal topology in cognitive control paradigms
(see Cavanagh and Frank, 2014; Cohen, 2014) and this cluster's key
position along the predicted contextually sensitive frontal hierarchy
(Koechlin and Summerfield, 2007). Although the model in Fig. 2 does
not predict target trial effects, the position factor examined a prediction
substantiated in the task-switching literature and on preliminary ERP
evidence that proactive interference from the highly informative
“switch” grey Gabors will be maximal on target trial 1 and minimal on
a function of the sensory entropy, H(si)=−p(si) ⋅ log2p(si), of grey and colored gratings in
retical human capacity for holding information in working memory: 2.5 bits. According to
l tasks. In turn, grey gratings carried varying amounts of information for response selection
s is derived from the notion of mutual information, I(S; R), between the sets of stimuli, S=
; Koechlin and Summerfield, 2007; see details in the Supplementary materials).



Table 1
Mean RT (ms) and error rate for each trial type and target position.

RT (ms) ± SE Accuracy (% error rate) ± SE

Target 1 Target 3 Mean Target 1 Target 3 Mean

Oddball 344 ± 7.8 343 ± 8.4 344 ± 8.1 0.9 ± 0.2 0.9 ± 0.2 0.9 ± 0.2
Go 448 ± 12.4 410 ± 9.3 429 ± 10.7 6.1 ± 0.7 4.9 ± 0.6 5.5 ± 0.6
Repeat 541 ± 14.4 503 ± 13.1 522 ± 13.3 9.0 ± 1.2 6.9 ± 0.8 8.0 ± 1.0
Switch 510 ± 14.5 489 ± 13.6 499 ± 13.4 9.5 ± 1.0 8.4 ± 0.9 9.0 ± 0.7
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target trial 3, with target 2 reflecting a mixed intermediate stage
(e.g., Barceló et al., 2014). To identify significant and common changes
in power from baseline, we performed one-sample t-tests at each
frequency × time point for the midfrontal cluster, with multiple
comparison correction applied (false discovery rate, FDR p b .001;
Benjamini and Yekutieli, 2001). Based on this analysis, we were able
to identify common power processes associated with the context of
interest (i.e., grey Gabor, target 1, or target 3). Next, we used these sig-
nificant frequency × time clusters as masks and extracted average
power for each of the four frequencies of interest (i.e., delta, theta,
alpha, and beta) for each condition (oddball, go/nogo, repeat, and
switch) separately across the scalp. Preliminary analyses suggested
central and posterior power changes were also observed, alongside
our hypothesized frontal power effects and so to characterize the data
more completely, we extracted frequency power at frontal (F1, Fz, F2),
frontocentral (FC1, FCz, FC2), central (C3, Cz, C4), parietal (P1, Pz, P2),
and parietoccipital (PO3, POz, PO4) clusters. Finally, we performed sep-
arate 4 (TARGET TYPE; oddball, go/nogo, repeat, switch) × 5 (SITE; fron-
tal, frontocentral, central, parietal, parietoccipital) × 4 (FREQUENCY;
delta ∈2–4 Hz, theta ∈4–7 Hz, alpha ∈8–13 Hz, beta ∈14–30 Hz)
repeated-measures ANOVAs for the grey, target 1, and target 3 contexts.
To visualize the spatial dimension of time-frequency components, and
the results of the ANOVAs, we provide representative topographical
plots.

Results

Behavioral results

Greenhouse–Geisser correction was applied where necessary to
control for violations of sphericity (Vasey and Thayer, 1987) but non-
corrected degrees of freedom are reported for readability. For RT, the
assumption of sphericity was not met for the main effect of TASK
(χ2(5) = 32, p b .001). Significant main effects for TARGET TYPE
(F(3,90) = 174, p b .001; partial η2 = .85), POSITION (F(1,30) = 37.1,
p b .001; partial η2= .55) and the TARGET TYPE × POSITION interaction
(F(3,90) = 11.9, p b .001; partial η2 = .28) were found. RT was signifi-
cantly faster for oddball targets than go (t(30)=11.7, p b .0001), repeat
(t(30) = 15.7, p b .0001), and switch (t(30) = 14.7, p b .0001) targets.
Likewise, responses were faster for go targets than either repeat
(t(30) = 11.1, p b .0001) or switch targets (t(30) = 9.2, p b .0001).
However, a typical switch cost was not found; overall switch targets
were performed faster than repeat targets (t(30) = 4.8, p b .0001). RT
reduced with target position (i.e., 1 to 3) for go/nogo and switch tasks,
but not for the oddball task.

For accuracy, the assumption of sphericity was not met for the main
effect of TARGET TYPE (χ2(5) = 16, p = .007) and the TARGET
TYPE × POSITION interaction (χ2(5) = 43.1, p b .001). The main effects
for TARGET TYPE (F(3,90) = 55.1, p b .001; partial η2 = .65) and
POSITION (F(2,60) = 6.6, p = .016; partial η2 = .18) were significant,
but not their interaction. Response accuracy increased with target posi-
tion. As with RT, responses were more accurate for oddball targets than
go (t(30) = 8.2, p b .0001), repeat (t(30) = 7.7, p b .0001), and switch
(t(30) = 12.2, p b .0001) targets and for go targets than either repeat
(t(30) = 3.9, p = .001) or switch (t(30) = 5.7, p b .0001) targets.
There was no significant difference between repeat and switch targets
(see Table 1).

In sum, behavioral performance is partly consistent with the predic-
tions of the information theory estimates of each trial (see Fig. 2).While
all target stimuli had identical stimulus entropy (see Supplementary
Materials), oddball targets that were associated with lower response
entropy had faster and more accurate responses than go and repeat/
switch targets (see Supplementary Materials). Likewise, first position
targets in the switch taskwhichwere preceded by grey gratings that re-
quired larger sensorimotor control and access to episodic information
than in the other tasks had slower RT and poorer accuracy compared
with go and oddball targets in the same position. These results appear
to reflect global differences in task-set information (i.e., the sum of
switch sensorimotor si–rj information vs. sum of all go/oddball si–rj
pathways), as well as specific trial-by-trial differences in information
and corresponding behavior, since the comparatively more informative
grey gratings in go/nogo and switch tasks overshoot memory capacity
and thus can explain residual restart costs (i.e., slower performance on
first target after a switch cue) to first targets in these two tasks relative
to the oddball tasks.

Power results

Grey Gabor
Fig. 3 depicts the average time-frequency responses associated with

all grey Gabor at the frontocentral representative cluster, i.e., the
condition-average power across electrodes (FC1, FCz, and FC2). Dark
outlines indicate significant changes in power. Grey Gaborswere associ-
ated with a broad increase in delta/theta power for the duration of the
stimulus, peaking around 400 ms after stimulus onset. Additionally,
transient decreases in alpha and beta power were also observed. As
shown in the accompanying bar plot (Fig. 3B), increasing information
associated with the grey Gabor was associated with increased power
responses in all frequency bands.

To explore these power changes further, significant time× frequency
clusters (i.e., outlined areas seen in Fig. 3A) were extracted from each
grey Gabor type (i.e., oddball, nogo, repeat, and switch cues) across
multiple clusters along the head. These data were then subjected to a
4 (TARGET TYPE; oddball, nogo, repeat, and switch) × 5 (SITE; frontal,
frontocentral, central, parietal, parietoccipital) × 4 (FREQUENCY; delta,
theta, alpha, and beta) repeated-measures ANOVA, with Greenhouse–
Geisser correction applied for violations of sphericity. Significant main
effects were found for TARGET TYPE (F(3,90) = 6.5, p = .003; partial
η2 = .17); SITE (F(4,120) = 22.9, p b .001; partial η2 = .43) and
FREQUENCY (F(3,90) = 157.2, p b .001; partial η2 = .84). Simple effects
showed a significant linear trend across TARGET TYPE (F(1,30) = 9.3,
p = .005, partial η2 = .24), with oddball having the highest power,
followed by nogo, repeat, and switch cues. By contrast, both SITE and
FREQUENCY had significant quadratic trends (SITE: F(1,30) = 31.5,
p b .001, partial η2 = .51; FREQUENCY: F(1,30)= 14.5, p= .001, partial
η2 = .33), with frontal sites associated with strong increases in power
and posterior sites with strong decreases and lower frequency bands
(i.e., delta and theta) having increases in power and higher bands
(alpha and beta) decreases. Next significant two-way interactions
were found for TARGET TYPE × SITE, F(12,360) = 5.5, p b .001; partial
η2= .16; TARGET TYPE × FREQUENCY, F(9,270)=30.1, p b .001; partial
η2 = .5 and SITE × FREQUENCY, F(12,360) = 8.9, p b .001; partial η2 =
.23). Finally, a significant three-way TARGET TYPE × SITE × FREQUENCY
interaction was also present (F(36,1080) = 4.8, p b .001; partial η2 =
.14) reflecting the TARGET TYPE× FREQUENCYdifferences inmagnitude
were most prominent at particular topographical locations.

To assist in detailing the above interactions, Fig. 4 depicts each
Gabor's topography associatedwith the four frequency bands. Visual in-
spection highlights the relative increase in lower frequency delta and
theta band power for repeat and switch Gabors compared to oddball
and nogo Gabors in line with the above TARGET TYPE × FREQUENCY
and TARGET TYPE × SITE × FREQUENCY interactions. Indeed, contrasts



Fig. 3. Condition-average time-frequency plots for grey Gabors at the frontocentral cluster (i.e., FC1, FCz, FC2). (A) As seen in the time-frequency plot, grey Gaborswere typically associated
with an increase in lower frequency delta/theta power and decreases in alpha and beta power. Dark outlines indicate significant time × frequency clusters, corrected for multiple compar-
isons (false discovery rate; FDR p b .001). (B) Bar plots depicting average of frequency band clusters (shown in Fig. 3A) for each condition's grey Gabor. Delta, theta, and alpha show in-
formation-specific modulations of power levels, with highest information transmitted by repeat and switch grey Gabors leading to larger power responses.
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revealed that these differences were significant, with increased repeat/
switch Gabor delta power at the frontal clusters compared to oddball
(frontocentral: repeat, t(30) = 3.7, p = .001; switch, t(30) = 3.4,
p = .002) and nogo (frontal: repeat, t(30) = 2.5, p = .019; switch,
t(30) = 2.4, p = .024; frontocentral: repeat, t(30) = 2.5, p = .019;
switch, t(30) = 2.4, p = .024) Gabors. Likewise, theta for repeat and
switch Gabors was strongest at frontal (repeat vs. oddball, t(30) =
3.2, p = .003; repeat vs. nogo, t(30) = 2.1, p = .04; switch vs. oddball,
t(30) = 3.2, p = .003; switch vs. nogo, t(30) = 2.7, p = .031) and
frontocentral sites (repeat vs. oddball, t(30) = 4.3, p b .001; repeat vs.
nogo, t(30) = 2.3, p = .03; switch vs. oddball, t(30) = 3.2, p = .003).
In addition, a broad posterior decrease in alpha was observed, strongest
for the repeat/switch Gabor, present for both the parietal (repeat vs.
oddball, t(30) = 3.5, p = .001; switch vs. oddball, t(30) = 6.7,
p b .001; switch vs. nogo, t(30) = 5.9, p b .001) and parietoccipital
(repeat vs. oddball, t(30) = 3.8, p = .001; repeat vs. nogo, t(30) =
Fig. 4. Topology plots depicting the spatial dimension of each frequency cluster (seen in
Fig. 3A) for each condition's grey Gabor. For delta and theta power, similar topologies
are seen across all Gabor, with strongest frontal power observed for higher levels of
information (i.e., repeat and switch cues). Additionally, a broad, posterior decrease in
alpha power is observed specifically for repeat and switch grey Gabors, which provide
the opportunity for proactive control processes to be employed. Note beta has a reduced
color scale magnitude relative to the other bands.
2.9, p = .007; switch vs. oddball, t(30) = 6.7, p b .001; switch vs.
nogo, t(30) = 6.5, p b .001) clusters. Additionally, repeat and switch
cues significantly differed in posterior alpha power (parietal cluster;
repeat vs. switch, t(30) = 4.1, p b .001; parietoccipital cluster; repeat
vs. switch, t(30) = 4.4, p b .001), but not in any further frequencies.
Finally, a weaker, less consistent, parietal decrease in beta was observed
alongside the alpha process (parietal; nogo vs. oddball, t(30) = 5.8,
p b .001; repeat vs. oddball, t(30) = 4.4, p b .001; switch vs. oddball,
t(30) = 6.7, p b .001; switch vs. nogo, t(30) = 4.6, p b .001;
parietoccipital; nogo vs. oddball, t(30) = 4.1, p b .001; repeat vs. odd-
ball, t(30) = 2.8, p = .009; switch vs. oddball, t(30) = 3.1, p = .004).
Thus together, the unexpected reduced power for repeat and switch
cues seen in the main effect of TARGET TYPE above was ultimately a
consequence of stronger power at frontal sites and larger decreases in
power at posterior sites for Gabors with greater information. That is,
while frontal delta and theta was strongest for repeat and switch cues,
a large posterior decrease for alpha and beta was also present at
the same time leading to an overall lower power value for these cues.
Further, this posterior process was significantly different between cues
indicating an upcoming need to repeat or switch tasks.

In sum,while grey Gabors are identical stimuli that occur with equal
likelihood in each task, their conveyed meaning differs between con-
texts (and thus are associated with changes in information values).
These corresponding changes in information were tied to changes in
power responses, particularly with frontal delta/theta and posterior
alpha/beta. That is, repeat and switch grey Gabors, which serve as pro-
active cues, have higher sensorimotor and episodic information values
than the corresponding Gabor in the oddball/nogo contexts and in
turn had power changes in line with these information values.

Target 1
Fig. 5 depicts the average time-frequency responses associated

with all target 1 Gabors at the frontocentral representative cluster.
As with grey Gabors, a strong, common increase in delta and theta
was seen for all target 1 stimuli, peaking around 400 ms after target
onset. In addition, a decrease in alpha power is seen across all targets
alongside transient increases and decreases in beta. To ensure we
accounted for these transient beta changes, we again ran a repeated-
measures ANOVA but with the inclusion of a beta positive (beta+)
and a beta negative (beta−) cluster: i.e., a 4 (TARGET TYPE; oddball,
nogo, repeat and switch) × 5 (SITE; frontal, frontocentral, central,
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Fig. 5. Condition-average time-frequency plots for target 1 at the frontocentral cluster (i.e., FC1, FCz, FC2). (A) Like with grey Gabors, all target 1 stimuli were associated with increases in
lower frequency delta/theta power and decreases in alpha/beta power. Additionally, later transient increases in beta power were observed. Dark outlines indicate significant
time × frequency clusters, corrected for multiple comparisons (false discovery rate; FDR p b .001). (B) Bar plots depicting average of frequency band clusters (shown in Fig. 5A)
for each condition's target. Compared to the grey Gabors, relatively smaller differences are seen between conditions across the frequency bands, consistent with similar amounts of
sensorimotor information present for these targets.

Fig. 6. Topology plots depicting the spatial dimension of each frequency cluster (seen
in Fig. 5A) for each condition's target 1. A common frontoparietal delta process is seen
for all targets, appearing strongest for repeat/switch targets. Next, a common
frontocentral theta process is seen for all targets (albeit less focused in the oddball
targets). Finally, for all targets requiring a motor response (i.e., oddball, go, repeat, and
switch), a central, bilateral decrease in alpha power is seen, together with two chronolog-
ically distinct clusters of desynchronized (beta−; early occurring) and synchronized
(beta+; late occurring) activity. Note that beta has a reduced color scale magnitude rela-
tive to the other bands.
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parietal, parietoccipital) × 5 (FREQUENCY; delta, theta, alpha, beta+
and beta−) ANOVA. Across the scalp, and as before, we see significant
differences of overall power between the conditions TARGET TYPE
(F(3,90) = 4.7, p = .015; partial η2 = .14), with switch targets asso-
ciated with the strongest overall power, followed by go, repeat and
oddball (simple contrasts linear trend: F(1,30) = 5.1, p = .032; partial
η2 = .15). Further, there were expected differences in power across
the sites (SITE; F(4,120)= 13.4, p b .001; partial η2= .31) and frequen-
cies (FREQUENCY; F(4,120) = 87.9, p b .001; partial η2 = .75). As with
the grey Gabors, there was a significant quadratic trend of SITE, with
both frontal and posterior sites associated with increases in power,
coupled with a strong decrease in power over central sites (F(1,30) =
27.3, p b .001; partial η2 = .47). Likewise, a quadratic trend for
FREQUENCY was observed, with strongest increases in power for delta
and theta, a prominent decrease in alpha power and reduced power
for beta (F(1,30) = 13.1, p = .001; partial η2 = .3). A significant
TARGET TYPE × SITE interaction was seen (F(12,360) = 5.9, p b .001;
partial η2 = .16), whereby little difference in power was seen between
targets at frontal sites but differences emerged at central and posterior
sites (see below; Fig. 6). Likewise, targets tended to differ in overall
alpha and theta power rather than delta or beta (TARGET TYPE ×
FREQUENCY; F(12,360) = 5.8, p b .001; partial η2 = .16). Finally,
frequency bands tended to have different spatial topologies (SITE ×
FREQUENCY; F(16,480) = 22.6, p b .001; partial η2 = .43), with broad
spatial distributions for delta and beta power, a frontocentral topology
for theta and a central topology for alpha (see Fig. 6). Finally, a signifi-
cant TARGET TYPE × SITE × FREQUENCY interaction was also observed
(F(48,1440) = 2.1, p = .017; partial η2 = .07).

As seen in the topology plots shown in Fig. 6, all target types
had similar spatial distributions of frequency power, with broad
frontoparietal delta topologies, frontocentral theta and bilateral, central
alpha. However, as suggested by themain effect of TARGET TYPE and in-
spection of the topology plots shown in Fig. 6, these power responses
appeared strongest in the switch targets. Indeed, little difference was
seen between targets in overall delta or theta power, while for alpha
(go vs. oddball, t(30) = 3.9, p b .001; repeat vs. oddball, t(30) = 3,
p = .006; switch vs. oddball, t(30) = 3.6, p = .001; go vs. switch,
t(30) = 2.3, p = .027; repeat vs. switch, t(30) = 2.7, p = .012) and
beta clusters (beta+; go vs. repeat, t(30) = 2.2, p = .034; repeat vs.
switch, t(30) = 2.1, p = .047; beta−; switch vs. oddball, t(30) = 2.3,
p = .032; go vs. repeat, t(30) = 3.1, p = .004; repeat vs. switch,
t(30) = 3.4, p = .002), targets were significantly different in power
(also see Fig. 6). While for the grey Gabor repeat and switch trials
had strong, posterior decreases in alpha, for target 1 all trials had central
bilateral alpha changes, suggestive of common motor/response-related
processes. Indeed, the blue oddball distractors, which required no
motor response, had no bilateral alpha processes (blue vs. red oddball,
t(30) = 5.6, p b .001; blue vs. go, t(30) = 5.1, p b .001; blue vs. repeat,
t(30) = 4.8, p b .001; blue vs. switch, t(30) = 3.5, p = .002). Thus,
only targets that require an overt motor response are associated with
bilateral central alpha processes. Finally, for go, repeat, and switch
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Fig. 8. Topology plots depicting the spatial dimension of each frequency cluster (seen in
Fig. 7A) for each condition's target 3. As with target 1, common frontoparietal delta
processes are seen for all targets, appearing strongest for repeat/switch targets. Again, a
common frontocentral theta processes is seen for all targets. For all targets requiring a
motor response (i.e., oddball, go, repeat, and switch), a central, bilateral decrease in
alpha power is seen. Lastly, central beta desynchronization (beta−) is also seen to accom-
pany the alpha process in targets requiring a motor response, followed by a distinct beta
synchronization (beta+) mostly following motor responses. Note beta has a reduced
color scale magnitude relative to the other bands.
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targets, there appeared to be an alpha rebound in posterior power,
which was significantly different than the oddball target 1 (parietal
cluster for alpha: oddball vs. go, t(30) = 3.3, p = .002; oddball vs.
repeat, t(30) = 3, p = .005; oddball vs. switch, t(30) = 3.9, p = .001;
parietoccipital cluster for alpha: oddball vs. go, t(30) = 5.5, p b .001;
oddball vs. repeat, t(30) = 3.3, p = .002; oddball vs. switch, t(30) =
3.2, p = .003). Although not explicitly predicted by our information
theory estimates, these differences do correspond to those targets that
followed a stimulus with high information value (i.e., the grey Gabors).
Thus, it is plausible these posterior processes reflect carryover effects in
line with the behavioral restart costs observed for target 1.

In sum, for target 1 stimuli, with similar levels of sensorimotor con-
trol we observed similar levels of power. Switch targets overall had
greater power (regardless of frequency), while displaying similar spatial
distributions of power as the other targets. In addition, for any target
requiring a motor response, we saw a bilateral central decrease in
alpha power, suggestive of common motor cortex activity.

Target 3
Common target 3 time-frequency activity is depicted in Fig. 7.

As with both grey and target 1 Gabors, a common delta/theta process
is seen, accompanied by alpha decreases and transient beta bursts. As
with target 1, both beta+ and beta− are included in the FREQUENCY
factor. Overall, there was a significant main effect of SITE (F(4,120) =
12.7, p b .001; partial η2 = .3) and FREQUENCY (F(4,120) = 102,
p b .001; partial η2 = .77). Simple contrasts revealed significant
quadratic trends for SITE (F(1,30) = 32.2, p b .001; partial η2 = .52)
and FREQUENCY (F(1,30)=23.9, p b .001; partial η2= .44). Interesting-
ly, no significant main effect of TARGET TYPE was found, suggesting
similar oscillatory processes are occurring by the time the third target
appears. Further, a significant TARGET TYPE × FREQUENCY interaction
was present (F(12,360) = 4.8, p b .001; partial η2 = .14), with differ-
ences between the target types restricted largely to the alpha band
(go vs. oddball, t(30) = 3.5, p = .001; repeat vs. oddball, t(30) = 3.2,
p = .003; repeat vs. switch, t(30) = 2.1, p = .044). Additionally, a
SITE × FREQUENCY interaction was again observed (F(16,480) = 20.7,
p b .001; partial η2 = .41), with broad spatial distributions for delta
and beta power, like those seen in target 1, frontocentral theta, and a
central alpha topology (see Fig. 8). However, no TASK × SITE interaction
Fig. 7.Condition-average time-frequency plots for target 3 at the frontocentral cluster (i.e., FC1, F
increase in lower frequency delta/theta power and decreases in alpha power. Additionall
time × frequency clusters, corrected for multiple comparisons (false discovery rate; FDR p b

each condition's target. Little difference is seen between conditions across the frequency band
beta power than the other targets.
was found, suggesting similar topographical activity for all conditions
by the time target 3 appears. Fig. 8 shows a similar topographical distri-
bution as that seen in target 1; with broad frontoparietal delta activity,
frontocentral theta, and bilateral, central alpha. As before, only targets
requiring a motor response were associated with the central alpha
decrease. Lastly, a marginal TARGET TYPE × SITE × FREQUENCY interac-
tion was observed also for target 3 (F(48,1440) = 1.8, p= .046; partial
η2 = .06).

Finally, while all three temporal contexts had similar processes
evident (e.g., strong delta/theta power combined with alpha and beta
Cz, FC2). (A)As seen in the time-frequency plot, all target 3 stimuliwere associatedwith an
y, transient changes in beta power were observed. Dark outlines indicate significant
.001). (B) Bar plots depicting average of frequency band clusters (shown in Fig. 7A) for
s, with the exception of oddball target 3, which had lower theta, higher alpha, and lower
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activity), visual comparison of the topology plots suggests strong frontal
delta and theta components were present for grey Gabor compared
to frontoparietal and frontocentral delta and theta in subsequent targets
(see Figs. 4, 6 and 8). To determine if indeed there were distinct com-
ponents emerging over time, we ran the above ANOVA structure
(i.e., TARGET TYPE × SITE × FREQUENCY) with the inclusion of
POSITION (i.e., grey Gabor, target 1, target 3). Note, as the grey Gabor
did not have a positive beta cluster, we restricted the beta frequency
to only negative clusters (i.e., beta−) to permit comparisons. As before,
we sawmain effects of SITE (F(4,120)= 19.4, p b .001; partial η2= .39)
and FREQUENCY (F(3,90) = 164.6, p b .001; partial η2 = .85). These
main effects were associated with quadratic trends as seen in the
previous sets of analyses (SITE; F(1,30) = 52.1, p b .001; partial η2 =
.64, FREQUENCY; F(1,30) = 11.5, p = .002; partial η2 = .28). Likewise,
as before, there were significant SITE × FREQUENCY (F(12,360) = 21,
p b .001; partial η2 = .41) and TARGET TYPE × FREQUENCY
(F(9,270) = 6, p = .001; partial η2 = .17) interactions. Interestingly,
no significant main effect of TARGET TYPE or POSITION was found,
suggesting that overall across all temporal contingencies stimuli rely
on similar oscillatory processes. However, as seen in the previous
analyses, within temporal contingencies, there are power differences,
dependent on information content. Confirming this, we saw significant
TARGET TYPE × POSITION (F(6,180) = 9.4, p b .001; partial η2 = .24),
TARGET TYPE × FREQUENCY × POSITION (F(18,540) = 21.1, p b .001;
partial η2 = .41), TARGET TYPE × SITE × POSITION (F(24,720) = 7.2,
p b .001; partial η2 = .19), and TARGET TYPE × FREQUENCY × SITE ×
POSITION (F(72,2160) = 2.9, p = .001; partial η2 = .09) interactions.

Exploring these interactions further revealed that overall there
are significant differences in power between the task-switching cues
and the other grey Gabor (oddball vs. switch, t(30) = 3.2, p = .003;
nogo vs. switch, t(30) = 3.1, p = .004; repeat vs. switch, t(30) = 2.7,
p = .013). These differences are present in all frequency bands: delta
(oddball vs. repeat, t(30) = 2.5, p = .019; oddball vs. switch, t(30) =
3.1, p = .004; nogo vs. switch, t(30) = 2.4, p = .024), theta (oddball
vs. repeat, t(30) = 3.1, p = .004; oddball vs. switch, t(30) = 2.7, p =
.01; nogo vs. repeat, t(30) = 3.3, p = .002; nogo vs. switch, t(30) =
2.7, p = .011), alpha (oddball vs. repeat, t(30) = 4.5, p b .001; oddball
vs. switch, t(30) = 7.3, p b .001; nogo vs. repeat, t(30) = 2.1, p =
.045; nogo vs. switch, t(30) = 6.4, p b .001; repeat vs. switch, t(30) =
4.4, p b .001), and beta− (oddball vs. repeat, t(30) = 6.5, p b .001;
oddball vs. switch, t(30) = 8.6, p b .001; nogo vs. switch, t(30) = 3.7,
p = .001). By contrast, little difference is seen between power across
the targets, with the exception of switch target 1 vs. target 3 (t(30) =
3.7, p = .001). These differences were driven by stronger alpha and
beta− power present at target 1 vs. target 3 (alpha, t(30) = 3.5, p =
.002; beta, t(30) = 5.2, p b .001).

In sum, differences in information loaded most heavily on the grey
Gabor patches which differed more explicitly in meaning across the
three tasks. These differences in information were linked with changes
in frontal delta and theta power. First, a common set of delta processes
was present for all three tasks and all three temporal positions (i.e., cue,
target 1, and target 3). Second, a frontal theta component appeared
intimately related to information and was particularly associated with
Table 2
Summary of prominent frequency and spatial features for each context. Hypothesized informa

Grey Gabor (Information loading) Target 1 (Information load

Delta Frontal topology, stronger for nogo,
repeat and switch vs. oddball (sensorimotor control)

Frontoparietal topology, s
(sensorimotor control)

Theta Frontal topology, strongest for switch and repeat cues
(sensorimotor + episodic control)

Frontocentral topology, si
weakest for oddball (sens

Alpha Posterior decrease for switch and repeat cues only
(episodic control)

Bilateral central process fo
response (response proce

Beta Centroparietal decrease for repeat and switch cues
specifically, as per alpha (episodic control)

Posterior increase for beta
switch targets (carryover

Note: where targets have no hypothesized differences in information loading, we suggest a co
temporal context. This frontal theta component was strongest for stim-
uli that provided the highest amount of information and required
higher-order cognitive control operations (i.e., switch cues). In addition,
theta appears to encompass a midfrontal component that was present
for all stimuli, particularly evident in response to the targets. Finally,
two alpha power changes were seen. One decrease in alphawas located
bilaterally over central scalp sites for all stimuli that were linked to a re-
sponse. The other centroparietal decrease in alpha was switch-specific,
emerging only to the cue indicating the need to update higher-order
task rules. These differences are summarized in Table 2.
Discussion

According to dual modes of cognitive control models, differences
in situational factors or context influence the use of anticipatory,
proactive control vs. stimulus-driven reactive control (Braver, 2012).
In this study, we quantified such contextual influences using informa-
tion theory (cf. Barceló et al., 2008; Koechlin and Summerfield, 2007)
to explore the neural signatures of quantifiable contextual adjustments
of the cognitive control system. We found that cognitive control arises
from a sophisticated frequency landscape, with common context-
independent and specific context-sensitive processes relying on multi-
ple frequency bands. In particular, we identified common stimulus
resolution and response generation processes associated with transient
bursts of beta, frontoparietal delta, and frontocentral theta increases in
power and central alpha desynchronization. These common processes
likely reflect common “input” (i.e., stimulus processing; frontoparietal
delta) and “output” (i.e., response-related processes; central alpha)
mechanisms of the cognitive control system. Additionally, we identified
context-sensitive adjustments of the cognitive control system: frontal
delta power was sensitive to increasing sensorimotor control, frontal
theta power was sensitive to both increasing sensorimotor and epi-
sodic control processes (i.e., temporal context), and posterior alpha
desynchronization was sensitive to proactive rule updating (and their
associated carryover effects).

Together, these data suggest that the cognitive control system uti-
lizes a range of oscillatory bands depending on temporal and task con-
texts to achieve flexible control of thoughts and actions. While most
research in frontoparietal oscillatory signatures of control focus on
theta band dynamics (Cavanagh and Frank, 2014; Cooper et al., 2015a;
Cunillera et al., 2012; Gladwin and de Jong, 2005; Luu et al., 2004;
Moore et al., 2012; Sauseng et al., 2006; Trujillo and Allen, 2007), our
findings provide novel insight into a richer andmore dynamic environ-
ment comprised of multiple frequency bands that underlie cognitive
control. Such multiband dynamics of cognitive processes are being
increasingly recognized. For instance, Dipoppa and Gutkin (2013) re-
cently proposed an interplay between alpha, theta, and beta/gamma
bands in relation to memory trace clearing/blocking, maintenance,
and loading/updating processes during working memory. Together,
these findings suggest that cognitive control is achieved via a multi-
faceted frontoparietal functional architecture that relies on multiple
frequency bands to deal with information processing associated with
tion sensitivity is proposed beneath each finding.

ing) Target 3 (Information loading)

imilar across all targets Frontoparietal topology, similar across all targets
(sensorimotor control)

milar across all targets, albeit
orimotor control)

Frontocentral topology, similar across all targets
(sensorimotor control)

r all targets requiring motor
sses)

Bilateral central process for all targets requiring
motor response (response processes)

, strongest for go, repeat and
effects/restart costs)

Similar to central alpha process, albeit weakest for
oddball targets (response processes)

gnitive/motor mechanism.
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changing contextual demands, working memory updating, and re-
sponse generation.

Frequency signatures of “fractionated control”

Koechlin and Summerfield (2007) proposed that cognitive control
could be fractionated into specific sub-processes based on a temporal
gradient between past events and present or future actions. These
ideas integrate well with dual modes of control models (Braver,
2012), wherein increasingly future-oriented processes rely on anticipa-
tory or proactive control modes. Indeed, proactive and reactive control
modes appear to utilize distinct aspects of the prefrontal cortex (Braver
et al., 2009; Gilbert et al., 2010; Krug and Carter, 2012; Marklund and
Persson, 2012). Recent evidence is emerging of oscillatory mechanisms
corresponding with such differences (Cooper et al., 2015a; Jiang et al.,
2015; Van Driel et al., 2015). In the current paradigm, future-oriented
control processes were associated with information transmission
between current grey gratings and the ensuing goal-directed actions
required to sort color gratings under conditions of increasing task
complexity. In line with Koechlin and Summerfield (2007), these grey
gratings were associatedwith delta and theta power in anterior regions
of the prefrontal cortex consistent with proactive control operations.
Specifically, both repeat and switch cues that afforded opportunity for
proactive control had increased delta and theta frontal power compared
to identical grey gratings in the other two tasks that did not afford any
preparation. Thus, the current study provides evidence toward one
potential mechanism by which neural signatures of cognitive control
can be fractionated.

In addition to informing theproactive vs. reactive control distinction,
our use of information theory allowed a more nuanced dissection of
contextual influences on cognitive control. We present evidence that
Koechlin and Summerfield's hierarchical model of cognitive control
has a corresponding frequency hierarchy, with lower control processes
– i.e., sensorimotor control – associated with slower frequencies and
higher episodic control processes associated with faster frequencies.
Frontal delta appeared particularly sensitive to sensorimotor informa-
tion, so that differences between grey and target Gabor patches within
a task matched the amount of sensorimotor information predicted
(i.e., the differences between red targets and grey distractors in the
oddball task; see Fig. 2 and Supplementary Materials). Likewise,
corresponding targets between tasks had similar frontoparietal delta
power, mapping partially to similar amounts of sensorimotor control
required to implement identical stimulus–response pathways in all
tasks (i.e., press a button to all red patches). Interestingly, this distinc-
tion between rostral and frontoparietal delta for cues and targets,
respectively, is reminiscent of frontal vs. centroparietal topologies of
the novelty-related P3a and target-related P3b (Polich, 2007). Indeed,
as delta has been linked to P300 processes (e.g., Başar-Eroglu et al.,
1992), it is possible that these delta differences, that are sensitive to
sensorimotor information, may be spectral indices of frontoparietal
network activity that manifests as P300 components (cf. Barceló et al.,
2006). However, while this hypothesis is promising, the current study
did not examine ERPs and thus additional work is warranted to explore
this link.

By contrast, frontal theta did differ between corresponding targets
across conditions, suggesting sensitivity to more than just low-level
sensorimotor control. Indeed, as frontal theta effects differed between
grey and target stimuli, theta likely indexes temporal context captured
in the accumulation of both sensorimotor and episodic control processes.
Increasing informationwas associated with stronger and broader frontal
theta. Recently, Cohen (2014) proposed that theta oscillations in the
prefrontal cortex are a manifestation of a general processing principle
of functional modules residing there, which are exploited to monitor
and respond to conflict (i.e., contextually sensitive information). While
EEG lacks the spatial resolution to ensure that the theta effect observed
here was indeed generated from such functional modules, given the
robustness of association between frontal theta and prefrontal cortex
generators (Cavanagh and Frank, 2014), it is practical to consider our
results from this perspective. As such, temporal contextual demands
(i.e., sensorimotor + episodic information) require additional anterior
regions of the prefrontal cortex to be brought online proactively
(Koechlin and Summerfield, 2007), resulting in increasing frontal theta
power as more frontal generators are engaged.

This study fits well with other recent work relating low frequency
oscillations to sensorimotor control (Arnal and Giraud, 2012; Arnal
et al., 2015; Nácher et al., 2013; Zavala et al., 2015). For instance, Arnal
and Giraud (2012) suggested that low frequency oscillations can mod-
ulate sensory processing and influence behavior through phase align-
ment of cortical rhythms. Specifically, delta–theta oscillations are reset
in response to sensory events, which can then be used as an anticipatory
mechanism during attention. While our results support the notion of
anticipatory processes relying on these frequencies, differences be-
tween tasks and context suggest that a more general link to task uncer-
tainty, or sensorimotor information, is better suited to explain delta and
theta roles in cognition. Indeed, Nácher et al. (2013) showed that during
a tactile discrimination task, long-range delta oscillations were associat-
ed with primate decision making. Here a macaque (Macaca mulatta)
was required to integrate contextually sensitive sensorimotor informa-
tion, similar to the sensorimotor information-related delta oscillations
seen in the current study.

Finally, a broad parietal decrease in alpha power was only seen in
response to task switching (i.e., repeat and switch) cues. This pattern
of activation follows that seen previously in anticipatory task-switching
studies (Foxe et al., 2014; Mansfield et al., 2012; Sauseng et al., 2006)
and likely indexes a working memory/rule updating process required
in task-cueing paradigms. Indeed, we saw differences within this
alpha process between repeat and switch cues, which according to our
information theoretical estimates differed primarily in higher episodic
control processes (like rule retrieval and rule updating). Recent
work has suggested that alpha synchronization/desynchronization
reflects a gating mechanism that permits information to enter a “global
workspace,”wherein task appropriate information is processed expedi-
ently (Palva and Palva, 2007). For example, Buschman et al. (2012)
reported desynchronization or suppression of alpha oscillations at
task-relevant regions of the cortex that facilitated attentional processes.
In this sense, when a cue indicates an upcoming need to maintain or
change rules, the global workspace is updated to reflect current task
demands prior to target onset, with desynchronization occurring over
visual cortices relevant for processing the color and/or spatial frequen-
cies of the upcoming target. Such an updating process is captured
in this posterior desynchronization that is distinct from the motor-
related activity seen for targets. Interestingly, this updating process
seen in the alpha desynchronization over posterior cortices may
therefore be another neural signature of switch costs, in linewith typical
preparatory switchpositivities seen in cue-lockedERPs (see Karayanidis
et al., 2010).

As outlined above, specific components of Koechlin and
Summerfield's hierarchy of cognitive control seem to correspond with
specific frequency signatures. Interestingly, the inputs and outputs of
the cognitive control system rely on many of the same frequencies as
the contextual processing. For instance, common target processing
across all targets was seen in a frontoparietal delta response and targets
that required motor responding had systematic decreases in alpha
power over the motor cortex. As would be predicted from reactive
control literature, there was also a common frontocentral or midfrontal
theta process for all targets. This supports the notion that target-driven
conflict or uncertainty resolution processes rely on commonmidfrontal
theta activity (see Cavanagh and Frank, 2014). However, only by
disentangling input, cognitive control, and output processes using
information theorywerewe able to provide such a fine-grained account
of the functional mechanisms of cognitive control. Such evidence
shows the remarkable flexibility of frontoparietal control networks in
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facilitating goal-directed behavior and the utility of adopting computa-
tional over merely notional models of cognition.

Together, these findings indicate that the frontoparietal control
network relies on multiple frequencies to meet current information
processing demands. Rule implementation and response generation
are achieved by appropriate regions of the cortex utilizing delta and
alpha frequency bands. With increasing information, contextual de-
mands are raised resulting in recruitment of theta generating prefrontal
regions. Finally, proactive rule updating needs rely on broad posterior
decreases in alpha, at least in visuomotor tasks involving simple stimu-
lus discrimination based on color and spatial frequency.

Final words of caution should be offered with respect to these inter-
pretations. First, while the observed broad frontal/parietal changes in
power are indicative of the frontoparietal architecture that cognitive
control is known to rely on, topographic changes in power do not
strictly reflect a functional network. Our power analyses allowed us to
interpret increasing theta power by assuming the recruitment of
increasing number of prefrontal modules. However, to ascertain that
these changes correspond to interactions within a frontoparietal net-
work, alternative neuroimaging methodologies need to be employed.
Further studies are needed which target functional connectivity (see
Cohen and Gulbinaite, 2014). For example, an appropriate next step
would be to explore within-frequency and cross-frequency coupling
between electrodes using inter-site clustering measures (e.g., coherence
or phase-lag indices) during taskswith quantifiable contextual demands.

Lastly, although Koechlin and Summerfield's model of fractionated
cognitive control appears sufficient to dissociate proactive and reactive
control processes, our implementation of thismodel is unable to predict
some important differences between targets we observed. For instance,
although local switch costs (i.e., poorer performance on switch trials vs.
repeat trials) are expected from traditional task switching, we did not
observe a significant switch cost behaviourally in the current paradigm.
Given that we used a 1900ms SOA, and ERP studies have suggested that
task reconfiguration is a fast, short-lived process that can be completed
in 800ms for simple rules (Barceló et al., 2008; Karayanidis et al., 2011),
it is likely the behavioural switch cost was eliminated due to sufficient
preparation. However, we still found evidence of a neural signature of
such switch costs in posterior alpha at cues and target 1.While informa-
tion theory suggests that, for the cue, this alpha process likely stems
from differences in episodic control demands, it is less clear why a dif-
ference in task-switching targets following the cue was present. That
is, according to information theory, these behavioral restart costs and
their accompanying alpha/beta changes should not occur if all targets
have identical information values (as predicted here). Such differences
hint at trial-by-trial, swift temporal dynamics that are not easily cap-
tured by our task-averaged information estimates, nor indeed by
those derived fromKoechlin and Summerfield's model. This is likely be-
cause information theory provides only a single value for each
condition's representative Gabor across the whole experiment, and
thus is unable to inform fast or slow time scale of neural operations in-
volved in processing those information values. Therefore, information
theory may be sufficient for characterising a stable process (whether
cognitive or neural) that does not vary much over time. However, alter-
nativemodels (e.g., Bayesian)might be better suited for capturing some
dynamic processes that change rapidly from trial to trial. Thus, addi-
tional work confirming these unexpected effects would facilitate an
eventual update of this model.

Conclusion

The regions of the cortex that promote flexible control are increas-
ingly well recognized, but the functional mechanisms that promote
such control are still poorly understood. Here, we have shown evidence
that multiple frequencies are associated with particular aspects of cog-
nitive control in a contextually sensitive fashion. Theta oscillations, in-
creasingly considered the language of control, appear to play just one
part of a broad spectral response to information processing. In particu-
lar, temporally contextual information was intimately tied to frontal
theta power, whereas task context was linked with delta oscillations.
Further rule updating and response processes were shown to rely on
alpha rhythms. Thus, consideringmultiple frequency responses togeth-
er facilitates amore thorough understanding of thedynamic interplay of
control networks underpinning human cognition.

Finally, only by utilizing objectivemeasures of context were we able
to highlight these signatures of cognitive control. This approach allowed
insight into not only typically reported task-specific differences in
electrophysiology but also relationships between temporal and task
contexts that underpin cognitive control. We have thus begun to
probe subtle, functional mechanisms within well-established frontal
processing systems that may ultimately result in effective cognitive
control.
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Supplementary	data	

	

Information	theoretic	estimations	of	sensory,	motor,	and	sensorimotor	control	at	two	levels	of	

a	putative	hierarchy	of	cognitive	control	for	the	switch,	go/nogo	and	oddball	tasks	(cf.,	

Attneave,	1959;	Barceló	et	al.,	2008;	Koechlin	&	Summerfield,	2007;	Miller,	1956).	

	

Stimulus	Entropy:		𝐻 𝑠# = −Σ#'() 	𝑝 𝑠# ∙ 	 log0 𝑝 𝑠# 	

Table	s1.	All	tasks.	The	same	set	and	sequence	of	stimuli	were	used	in	all	three	tasks,	and	

therefore,	the	same	stimulus	entropy	can	be	assumed	for	all	tasks:	

Gabors		 S1	 H(s)	 p(s)	 -log2·p(s)	

	 s1	 0.29	 0.08	 3.64	

	 s2	 0.29	 0.08	 3.64	

	 s3	 0.47	 0.21	 2.25	

	 s4	 0.47	 0.21	 2.25	

	 s5	 0.47	 0.21	 2.25	

	 s6	 0.47	 0.21	 2.25	
	 ΣH(si)=	 2.46	 	 	

	

Response	Entropy:		𝐻 𝑟2 = −Σ3
2𝑝(𝑟2) ∙ 	 log0 𝑝 𝑟2 	

Table	s2.	Oddball	task.	This	task	required	one-button	responses	(r1)	and	the	absence	of	

response	(r0)	to	all	non-targets.	The	response	set	can	be	defined	as	𝑹 = 	 𝑟3, 𝑟( 		

	

R	 H(r)	 p(r)	 -log2·p(r)	
r0	 0.45	 0.58	 0.78	
r1	 0.53	 0.42	 1.26	

ΣH(ri)=	 0.98	 	 	
	

Table	s3.	Go/nogo	and	switch	tasks.	These	two	tasks	required	two-button	responses	(r1,	r2)	and	

the	absence	of	response	(r0)	to	the	grey	gratings.	Hence,	the	response	set	is	𝑹 = 	 𝑟3, 𝑟(, 𝑟0 		

R	 H(r)	 p(r)	 -log2·p(r)	
r0	 0.43	 0.16	 2.60	
r1	 0.53	 0.42	 1.26	
r2	 0.53	 0.42	 1.26	

ΣH(rj)=	 1.49	 	 	
	

Sensorimotor	Information:		𝐼 𝑠#, 𝑟2 = log0 𝑝(𝑠#, 𝑟2) − 	 log0 𝑝 𝑠# − 	 log0 𝑝 𝑟2 	
																																																								
1	For	simplicity,	these	estimates	assume	a	stimulus	set	{S}	with	only	six	stimuli,	regardless	of	the	
fact	that	each	Gabor	grating	was	randomly	displayed	either	to	the	left	or	the	right	visual	hemifields.	
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The	information	transmitted	from	stimuli	to	responses,	I(si,	rj),	is	derived	from	the	notion	of	

mutual	information	between	sets	of	stimuli	{S}	and	responses	{R}		(Attneave,	1959):	

	 	

Table	s4.	Oddball	task.	This	task	required	one-button	responses	(r1)	only	to	the	red	Gabor	

gratings	(s5,	s6),	and	hence,	low-level	sensorimotor	control	for	the	relevant	task-set	units	(si-rj)	

in	the	oddball	task	can	be	estimated	as	follows:	

S-R	 p(si)	 p(rj)	 p(si,	rj)	 I(si,	rj)	
s1-r0	 0.08	 0.58	 0.08	 0.78	
s2-r0	 0.08	 0.58	 0.08	 0.78	
s3-r0	 0.21	 0.58	 0.21	 0.78	
s4-r0	 0.21	 0.58	 0.21	 0.78	
s5-r1	 0.21	 0.42	 0.21	 1.26	
s6-r1	 0.21	 0.42	 0.21	 1.26	

	 	 	 	 Σ(sirj)=	5.64	

Table	s5.	Go/nogo	and	switch2	tasks.	These	two	tasks	required	two-button	responses	(r1,	r2)	to	

classify	blue	and	red	Gabor	gratings	(s3,	s4,	s5,	s6),	and	hence,	low-level	sensorimotor	control	for	

the	relevant	task-set	units	(si-rj)	when	sorting	by	color	can	be	estimated	as	follows:	

S-R	 p(si)	 p(rj)	 p(si,	rj)	 I(si,	rj)	

s1-r0	 0.08	 0.16	 0.08	 2.61	

s2-r0	 0.08	 0.16	 0.08	 2.61	

s3-r1	 0.21	 0.42	 0.21	 1.26	

s4-r1	 0.21	 0.42	 0.21	 1.26	

s5-r2	 0.21	 0.42	 0.21	 1.26	

s6-r2	 0.21	 0.42	 0.21	 1.26	

	
	 	

	
Σ(sirj)=	10.26	

	

	

Episodic	Information:	𝐼 𝑠#, 𝑡𝑠: = log0 𝑝(𝑠#, 𝑡𝑠:	) − 	 log0 𝑝 𝑠# − 	 log0 𝑝 𝑡𝑠: 	

Table	s6.	Switch	task.	Only	the	Switch	task	required	access	to	episodic	task-set	(ts1)	

information	on	just	8%	of	all	trials	(s1-ts1),	while	no	task-set	access	(ts0)	was	required	in	the	

																																																								
2	Sensorimotor	information	in	the	switch	task	was	slightly	(~	1	bit)	larger	for	those	color	gratings	that	
afforded	bivalent	responses	(i.e.,	different	buttons	for	either	rule).	For	simplicity	this	additional	source	
of	contextual	information	was	not	included	here.	

I(S;R) = p(si, rj )
j
∑

i
∑ log

p(si, rj )
p(si )p(rj )
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remaining	trials.	The	transmitted	information	between	sensory	stimuli	and	access	to	episodic	

memories	in	this	task	can	be	estimated	as	follows:	

S-TS	 p(si)	 p(tsk)	 p(si,	tsk)	 I(si,	tsk)	
s1-ts1	 0.08	 0.08	 0.08	 3.61	
s2-ts0	 0.21	 0.92	 0.21	 0.12	
s3-ts0	 0.21	 0.92	 0.21	 0.12	
s4-ts0	 0.21	 0.92	 0.21	 0.12	
s5-ts0	 0.21	 0.92	 0.21	 0.12	
s6-ts0	 0.21	 0.92	 0.21	 0.12	

	 	 	 	 Σ(sitsk)=	4.21	
	

	

Table	s7.	Summary	of	numerical	values	plotted	in	Figure	2.	Transmitted	information	for	each	

task	stimulus	was	estimated	as	the	addition	of	information	across	two	levels	in	the	putative	

hierarchy	of	sensorimotor	control	processes	(i.e.,	s1	in	the	switch	task=	2.61	+	3.61=	6.22	bits;	

s1	in	the	NoGo	task=	2.61	+	0=	2.61	bits,	and	in	the	Oddball	task=	0.78	+	0=	0.78	bits).		

	 s1	 s2	 s3	 s4	 s5	 s6	
Switch	 6.22	 2.73	 1.38	 1.38	 1.38	 1.38	

Go/NoGo	 2.61	 2.61	 1.26	 1.26	 1.26	 1.26	
Oddball	 0.78	 0.78	 0.78	 0.78	 1.26	 1.26	
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