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a b s t r a c t

Past studies show that novel auditory stimuli, presented in the context of an otherwise
repeated sound, capture participants’ attention away from a focal task, resulting in measur-
able behavioral distraction. Novel sounds are traditionally defined as rare and unexpected
but past studies have not sought to disentangle these concepts directly. Using a cross-
modal oddball task, we contrasted these aspects orthogonally by manipulating the base
rate and conditional probabilities of sound events. We report for the first time that behav-
ioral distraction does not result from a sound’s novelty per se but from the violation of the
cognitive system’s expectation based on the learning of conditional probabilities and, to
some extent, the occurrence of a perceptual change from one sound to another.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

A cornucopia of studies demonstrates that unexpected
perceptual changes in our surroundings yield rapid, spe-
cific, and automatic brain responses. Much progress has
been achieved in this field since the discovery of the mis-
match negativity (MMN) response (Näätänen, Gaillard, &
Mäntysalo, 1978) observed in passive auditory oddball
tasks, 100–250 ms after the onset of a sound differing from
an otherwise repetitive auditory context (e.g., Grimm,
Widmann, & Schröger, 2004; Jacobsen, Horenkamp, &
Schröger, 2003; Paavilainen et al., 2003). This response is
widely interpreted as ‘‘the outcome of a comparison pro-
cess that registers a difference between the neural repre-
sentation of the actual input and the memory trace of the
invariances inherent to the recent stimulation’’ (Schröger,
2005, p. 490) and is followed by involuntary orientation

(P3a; e.g., Escera, Alho, Winkler, & Näätänen, 1998;
Schröger, Giard, & Wolff, 2000) and re-orientation (RON;
e.g., Berti & Schröger, 2001) brain responses.

Researched comparatively less, but at the core of our
study, novel sounds also yield measurable behavioral ef-
fects. When participants are engaged in a focal task, novel
sounds delay responses to contiguous target stimuli and,
occasionally, reduce response accuracy (e.g., Dawson,
Filion, & Schell, 1989; Grillon, Courchesne, Ameli, Geyer,
& Braff, 1990; Schröger, 1997; Woodward, Brown, Marsh,
& Dawson, 1991). This effect is observed in auditory (e.g.,
Berti & Schröger, 2003; Roeber, Berti, & Schröger, 2003;
Schröger & Wolff, 1998), visual (Berti & Schröger, 2004),
tactile (Parmentier, Ljungberg, Elsley, & Lindkvist, in press),
and cross-modal oddball tasks (e.g., Andrés, Parmentier, &
Escera, 2006; Parmentier & Andrés, 2010; Parmentier,
Maybery, & Elsley, 2010).

In the cross-modal oddball task, participants categorize
visual stimuli presented in sequence while ignoring sounds
presented immediately before each target stimulus. On
most trials, the same sound is presented (standard). On
rare and unpredictable trials, the standard is replaced by
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a different sound (novel). Evidence indicates that
behavioral distraction reflects a time penalty associated
with the shift of attention to and from the novel sound
rather than the slower processing of the visual targets
per se (Parmentier, Elford, Escera, Andrés, & San Miguel,
2008). In addition, Parmentier (2008) showed that
attention capture is followed by an involuntary semantic
analysis of the novel’s content which, when in conflict with
a target stimulus (interfering with its processing), is
followed by the inhibition of the distracter (Parmentier,
Turner, & Elsley, 2011).

Recently, Parmentier, Elsley, and Ljungberg (2010)
questioned the common assumption that novel sounds
capture attention by virtue of their novelty per se. These
authors suggested that behavioral novelty distraction
might only occur when the cognitive system makes use
of the sound as a valid warning cue, that is, when novelty
occurs within a stream of information used by the brain for
goal-relevant purposes. In line with this proposition, the
authors demonstrated that when sound is stripped of its
informational value (that is, when it did not announce a
target or its temporal onset), novel sounds yielded no dis-
traction. Furthermore, when novel sounds (but not stan-
dards) constitute valid warning cues, facilitation (instead
of distraction) is observed.

In this study, we probed further the fundamental nature
of behavioral novelty distraction by giving heed to another
pivotal, yet unfathomed, issue: What is the nature of the
change brought by novel auditory stimuli? We delineate
below three hypotheses and report an experiment de-
signed to disentangle them.

1.1. The base-rate probability hypothesis

Low base-rate probability, also referred to as rarity or
novelty, has traditionally been the key definition of a novel
or oddball stimulus. One idea permeating most oddball
studies of novelty detection is that the repeated presenta-
tion of the standard sound results in the building up of a
neural model with which incoming stimuli are compared
(e.g., Näätänen, 1990; Schröger, 1997). When this incom-
ing stimulus is rare, its clash with the neural model trig-
gers the detection of change and the involuntary capture
of the participant’s attention. This trace-mismatch view is
a prominent explanation of MMN (see Näätänen &
Winkler, 1999, for a review). Extrapolated to the measure-
ment of behavioral novelty distraction, the base-rate prob-
ability hypothesis predicts that any sound of low base-rate
probability, presented in the context of another (frequent)
sound, should yield novelty distraction.

1.2. The expectation hypothesis

Novel sounds are not only rare but also unexpected.
Probability and predictability are often used interchange-
ably in oddball studies but these concepts are not synony-
mous. In oddball tasks, the frequent occurrence of the
standard might result in the expectation by the cognitive
system, on any given trial, of another standard rather than
of a novel sound. Novel sounds might therefore capture
attention because they violate the cognitive system’s

expectation about upcoming events. The violation of pre-
dictions is increasingly emerging as an alternative to the
trace-mismatch account of MMN (Winkler, 2007). In line
with this view, unexpected stimulus omissions elicit
MMN (e.g., Yabe, Tervaniemi, Reinikainen, & Näätänen,
1997), as does the violation of incidentally learned rules
about perceptual transitions (Schröger, Bendixen, Trujillo-
Barreto, & Roeber, 2007; van Zuijen, Sussman, Winkler,
Näätänen, & Tervaniemi, 2005). According to the expecta-
tion hypothesis, a sound should distract participants in
the cross-modal oddball task whenever it violates the par-
ticipant’s expectation, irrespective of whether that sound
is frequent or not.

1.3. The local perceptual change hypothesis

While the first two hypotheses relate to the frequency of
occurrence of the standard and novel sounds, a third
hypothesis can be put forward: A novel may capture atten-
tion because it differs perceptually from the preceding
stimulus, in a similar way as, for example, changing irrele-
vant sounds disrupt serial memory (e.g., Jones & Macken,
1993). Numerous studies showed that memory for se-
quences of visually presented stimuli is disrupted by the
presentation of a to-be-ignored sequence of sounds but
only when this sequence consists of changing segmented
entities (e.g., Jones & Macken, 1995; Jones, Madden, &
Miles, 1992), an effect functionally distinct from the effect
of auditory deviants (Hughes, Vachon, & Jones, 2007).
According to the local perceptual change hypothesis, dis-
traction should be observed whenever change occurs from
one trial to the next, irrespective of the sounds involved,
and regardless of their base-rate probability and
predictability.

1.4. The present study

To disentangle the above hypotheses, we used a cross-
modal oddball task in which participants categorized the
parity of visually presented digits. Each digit was preceded
by an auditory stimulus that participants were instructed
to ignore. The original characteristic of our task resided
in the specific organization of the standard and novel trials.
The standard sound S (a sine-wave tone) was used in 75%
of trials while the novel sound N (burst of white noise)
was presented in the remaining 25%. The novel trials were
organized so that 8 out of 9 novels would form pairs of
consecutive trials among otherwise randomly dispersed
standard trials.

As visible from the top panel of Fig. 1, this manipulation
created six types of trials: standard following another stan-
dard (S, or baseline), first novel of a pair of novels (N1/2),
second novel of a pair of novels (N2/2), isolated novel (N1/

1), standard following an isolated novel (SN), and standard
following a pair of novels (SNN).

Before we present the specific predictions related to the
three hypotheses described earlier, two pertinent points
deserve a mention. First, our experiment relied on the cog-
nitive system’s ability for incidental learning (e.g., Kauf-
man et al., 2010; Reber, 1989). Such ability has been
observed in a variety of tasks, from the incidental learning
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of artificial grammars of letter strings (e.g., Dienes, Broad-
bent, & Berry, 1991) or sounds (e.g., Altmann, Dienes, &
Goode, 1995), to the progressive speeding up of motor ac-
tions in response to surreptitiously repeated sequences of
stimuli (e.g., Destrebecqz & Cleermans, 2001; Howard &
Howard, 1997; Nissen & Bullemer, 1987). Evidence shows
that humans, even from a very young age, are capable of
learning the statistical relationship between sequential
events (e.g., Aslin, Saffran, & Newport, 1998; Conway, Bau-
ernschmidt, Huang, & Pisoni, 2010; Saffran, Newport, &
Aslin, 1996). This is typically demonstrated in the so called
statistical learning task in which participants are exposed
to a statistically structured sequence of sounds while per-
forming another task and then asked to identify words
conforming to the incidentally learned statistical regulari-
ties (e.g., Creel, Newport, & Aslin, 2004, see Saffran, John-
son, Aslin, & Newport, 1999, for a similar evidence using
pure tones). The crucial point here is that these studies tes-
tify to the fact that participants not only learn the relative
frequency of stimuli but also, and most critically for our
purpose, the predictive relationship between them. In
other words, participants incidentally learn and use
knowledge about co-occurrence rates or conditional
probabilities.

The latter observation naturally brings us to the second
important point: the distinction between base rate and
conditional probabilities. The base-rate probability of a

stimulus is the probability of occurrence of that stimulus
irrespective of other stimuli. Base-rate probabilities are
crucial to the novelty account: A rare event (novel sound),
by clashing with the memory trace of a frequent one (stan-
dard), triggers the orientation of attention towards novelty.
The expectation hypothesis, on the other hand, posits that
the cognitive system uses its incidental knowledge of con-
ditional probabilities to predict future events. A condi-
tional probability is the probability of a stimulus given
one or several other stimuli. In oddball tasks, given a stan-
dard sound, the probability of another standard sound is
much greater than that of a novel sound. Following a stan-
dard, the cognitive system will therefore expect another
standard. The occurrence of a novel violates this expecta-
tion and it is this violation, not the novel sound’s rarity
per se, that is responsible for behavioral distraction. Our
study is unique in contrasting base rate and conditional
probabilities orthogonally, rendering it possible for the
first time to create situations in which a rare event is pre-
dictable and a frequent one is unexpected. In order to make
clear the distinction between the base rate and conditional
probabilities in the context of this study, we report in Table
1 both types of probabilities for each of our experimental
conditions.

Based on the above, a distinct pattern of predictions
was derived from each of the three hypotheses outlined
above. The base-rate probability hypothesis predicted that
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Fig. 1. Top panel: Schematic illustration of the six experimental conditions (see text for a description) created by the sequential presentation of trials
involving the standard sound (S) and the novel sound (N). Bottom left panel: Mean response times for correct responses in the six sound conditions of the
visual categorization task. Right bottom panel: Mean response times predicted from a model based on base-rate probability, auditory predictability and
perceptual change. Error bars represent one standard error of the mean.
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all novels (N1/2, N2/2, N1/1) should yield similar RTs, longer
than for the different types of standard (S, SN, SNN), which
should not differ for each other. As the base rates of the
standard and novel sounds remain .75 and .25, irrespective
of the immediately preceding sounds, any novel sound, by
virtue of clashing with the neural model of the most fre-
quent sound (standard), should yield distraction. Predic-
tions from the expectation hypothesis were based on the
calculation of conditional probabilities, and more precisely
the probability of a sound given the two immediately pre-
ceding sounds (see Table 1). The rationale here was that
the most probable sound given the two preceding sounds
would be that predicted by the cognitive system. Longer
RTs were predicted in response to all sounds violating
the cognitive system’s expectation, that is, to sounds with
low conditional probabilities (N1/2, N1/1, SN). In contrast,
shorter RTs were predicted in response to predictable
sounds, that is, sounds defined by high conditional proba-
bilities (S, SNN, N2/2). Finally, the local perceptual change
hypothesis predicted long RTs whenever a sound differs
from the preceding sound (N1/2, N1/1, SN, SNN) and short
RTs when they do not (S, N2/2).

2. Experiment

2.1. Method

2.1.1. Participants
Twenty (14 women) undergraduates from the Univer-

sity of Plymouth took part in this experiment in exchange
for a small honorarium. Participants were between 18 and
44 years of age (M = 24.2, SD = 6.4). All participants re-
ported normal or corrected-to-normal vision and normal
hearing.

2.1.2. Stimuli, design and procedure
Participants were presented with a total of 1512 test tri-

als (organized in six blocks of 252 each). In each trial, they
categorized a visual digit (1–6) as odd or even using two
arbitrary allocated keys (counterbalanced across partici-
pants). These digits were presented in random order (dif-
ferent for every participant) but with equal probabilities
across the task, at the center of the screen, sustaining a
viewing angle of approximately 2.6�. Each digit was pre-
sented for 200 ms and preceded by a 200 ms sound with

an SOA of 300 ms. Two sounds were used throughout the
experiment. The standard was a 600 Hz sine-wave tone.
The novel sound was a burst of white noise. Both sounds
were normalized and edited to include 10 ms rise and fall
ramps. Sounds were delivered binaurally through head-
phones at an intensity of approximately 75 dB. Upon the
offset of each visual digit, participants had a further
1200 ms to respond before the next trial began. A fixation
cross was present at the center of the screen throughout
each trial, except during the presentation of the visual
digits.

In 1134 trials (75%), the visual digit was preceded by
the standard sound, while in the remaining 378 (25%) it
was preceded by the novel sound. The novel trials were
distributed within each block so that eight out of nine nov-
els were presented on two consecutive trials (the remain-
ing novel was preceded and followed by a random
number of standard trials). Thus out of every five novel tri-
als preceded by a standard trial, four were followed by an-
other novel trial. A unique stimuli set obeying these rules
was generated for each participant, resulting in six condi-
tions (see Fig. 1, top panel): standard following another
standard (S, 924 trials), first novel of a pair of novels
(N1/2, 168 trials), second novel of a pair of novels (N2/2,
168 trials), isolated novel (N1/1, 42 trials), standard follow-
ing an isolated novel (SN, 42 trials), and standard following
a pair of novels (SNN, 168 trials). The first two test trials al-
ways involved the standard sound.

Eight practice (standard) trials were presented at the
beginning of each block. Participants used the Z and X keys
on the computer keyboard to respond using two fingers
from their dominant hand. The mapping between re-
sponses and keys was counterbalanced across participants.
Testing took place in a quiet room. Instructions empha-
sized the need for both speed and accuracy.

3. Results

Hit rates and mean response times for correct responses
were analyzed using a one-way ANOVA for repeated mea-
sures with the sound condition as the independent factor
(N1/1, N1/2, N2/2, S, SN, SNN). Hit rates were overall high
(M = .869, SD = .102) and did not vary across conditions,
F(5, 95) < 1, MSE = .002, p = .736, g2

p ¼ :028. Response
times, in contrast, varied significantly across conditions,
F(5, 95) = 5.555, MSE = 263, p < .001, g2

p ¼ :226. As visible
from Fig. 1 (bottom left panel), response times were lon-
gest in the N1/2, N1/1 and SN conditions (which yielded sim-
ilar response times), shortest in the S and N2/2 conditions
(which resulted in comparable response times) and inter-
mediate in the SNN condition. Planned contrasts confirmed
these observations. In line with all three hypotheses,
response times were significantly longer in the N1/1 and
N1/2 conditions compared to the standard (S) condition,
F(1, 19) = 17.133, MSE = 168.907, p < .001, and F(1, 19) =
19.828, MSE = 133.727, p < .001 respectively. In line with
the expectation and perceptual change hypotheses but
clashing with the base rate hypothesis, response times
were significantly shorter in the N2/2 compared to the SN,
N1/1 and N1/2 conditions, F(1, 19) = 6.882, MSE = 478.953,

Table 1
Base rate [p(i)] and conditional [p(i|(i�2)(i�1))] probabilities for the current
sound (i), which was either the standard (S) or the novel (N) sound, in each
of the 6 experimental conditions. Probabilities are rounded up to two
decimals and are calculated on the 1512 test trials. The first two test trials
(always standard trials) were counted as standards following two standards
since test trials were preceded by standard practice trials.

Condition Two preceding
sounds
(i�2, i�1)

Current
sound (i)

p(i) p(i|(i�2)(i�1))

S SS S .75 .81
N1/2 and N1/1 SS N .25 .19
N2/2 SN N .25 .80
SN SN S .75 .20
SNN NN S .75 1
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p < .05, F(1, 19) = 18.759, MSE = 181.204, p < .001, and
F(1, 19) = 30.630, MSE = 102.388, p < .001, respectively.
Furthermore, response times in the SN condition were
similar to the N1/1 and N1/2 conditions, F(1, 19) < 1, MSE =
678.519, p = .973, and F(1, 19) < 1, MSE = 489.355,
p = .950, respectively, but significantly longer than in the
S condition, F(1, 19) = 5.079, MSE = 551.065, p < .05. Finally,
contrasts confirmed that response times in the SNN

condition fell significantly below the combined peaks of
the N1/1, N1/2 and SN condition, F(1, 19) = 6.864, MSE =
145.512, p < .05, but higher than in the S and N2/2 condi-
tions, F(1, 19) = 6.888, MSE = 164.837, p < .05.

3.1. Modeling response times

In order to assay the roles of base rate, expectation and
perceptual change in our data and to model response times
in our task, we used a regression model in which the
dependent variable was the mean RT for each participant
and condition in our experiment (i.e., 120 means) and in
which there were four independent variables (see May-
bery, Parmentier, & Jones, 2002; Parmentier & Maybery,
2008, for examples of this approach). The first parameter
of the model, aimed to capture inter-individual differences,
was the mean response time per participant. The remain-
ing three parameters coded for the roles of novelty, expec-
tation and perceptual change and took binary values. A
parameter was set to 1 when a factor was hypothesized
to predict behavioral distraction (0 otherwise). For exam-
ple, parameters for condition N2/2 were set to 1, 0 and 0
for the base rate, expectation and perceptual change fac-
tors respectively. The model accounted for most of the RT
variance, R2 = .934, F(4, 115) = 404.46, p < .001. Inter-indi-
vidual variations contributed significantly to the model’s
goodness of fit, B = 0.999, t(115) = 39.804, p < .001, as did
expectation, B = 8.599, t(115) = 1.990, p < .05, and percep-
tual change, B = 8.899, t(115) = 2.059, p < .05, but base rate
did not, B = �0.658, t(115) = �0.215, p = .830. As can be
seen from Fig. 1 (bottom right panel), our model produced
a pattern of RTs strikingly similar to our empirical data,
capturing all our key findings, including the intermediate
mean RT in the SNN condition.

4. Discussion

We measured the behavioral distraction yielded, in an
ongoing visual categorization task, by the presentation of
rare and unexpected changes in a sequence of auditory
distracters. The pivotal manipulation consisted of the care-
ful ordering of trials involving standard (tone) and novel
(white noise) sounds with the aim of establishing whether
novel sounds yield behavioral distraction because they are
rare, because they violate the cognitive system’s expecta-
tions, or because they involve a perceptual change from
the previous sound. Our results can be summarized as fol-
lows. First, contrary to the predictions of the base-rate
probability hypothesis, distraction was not systematically
induced by the novel sound. Indeed, performance follow-
ing a predictable novel (N2/2) was comparable to that in
the standard condition S while an unexpected standard

sound (SN) produced as much distraction as unexpected
novels (N1/1 and N1/2). These findings matched the predic-
tions of both the expectation and perceptual change
hypotheses. The critical condition to disentangle the latter
two hypotheses was the SNN condition, that is, the condi-
tion in which a standard trial followed two consecutive no-
vel trials. In that condition, the standard sound was
predictable while inducing a perceptual change from the
previous trial. Response times in that condition were sig-
nificantly shorter than in the conditions in which the
sound was not predictable (N1/1, N1/2, SN), in line with
the expectation hypothesis but clashing with the percep-
tual change hypothesis. However, response times in that
condition were also significantly longer than in the condi-
tions in which the sound was predictable (S, N2/2), in line
with the perceptual change hypothesis but contradicting
the expectation hypothesis. In sum, results from the SNN

condition suggest that both expectation and perceptual
change may contribute to distraction. In line with this con-
tention, a model based on expectation and perceptual
change, produced a remarkably close fit to our empirical
data and captured all our findings.

Our results evidenced an effect of perceptual change,
even when predictable (SNN). Two potential explanations
can be proposed for this effect. The first is that the transi-
tory perceptual difference between the previous stimulus’
memory trace and the current sound yields disruption,
reminiscent of the general detrimental effect yielded by
task-irrelevant changes observed in recognition studies
when study and test stimuli are presented in different con-
texts (e.g., Isarida & Isarida, 2007; Maybery et al., 2009;
Pascalis, Hunkin, Bachevalier, & Mayes, 2009; see Kawaha-
ra, 2007; Pescara-Kovach, Fulkerson, & Haaf, 2000, for
studies using visual stimuli in an auditory context). Dis-
traction in the SNN condition converges with reports of
behavioral distraction on the first standard trial following
a novel trial in auditory and auditory-visual oddball tasks
(Ahveninen et al., 2000; Berti, 2008; Parmentier & Andrés,
2010; Roeber, Widmann, & Schröger, 2003). Our results
suggest that it cannot be reduced to residual distraction
lingering from the preceding novel trial since, in our study,
distraction occurred on the standard trial following a novel
trial yielding no distraction. Tentatively, one may propose
that a local perceptual change elicits some degree of dis-
traction. In line with this contention, some studies re-
ported a small but significant MMN response on post-
deviant standard trials in passive listening tasks (Nousak,
Deacon, Ritter, & Vaughan, 1996; Sams, Alho, & Näätänen,
1984), as well as P3a and RON responses on such trials in
a tone duration judgment task (Roeber, Berti, Widmann,
& Schröger, 2005; Roeber et al., 2003).

The second potential account of the distraction ob-
served in the SNN condition relies on the involuntary
extraction of a local rule. While some studies suggest that
several repetitions of a sound are necessary for a neural
model of the standard to develop (e.g., Cowan, Winkler, Te-
der, & Näätänen, 1993; Sams et al., 1984), others demon-
strate the existence of rapid rule extraction mechanisms
(Bendixen & Schröger, 2008; Haenschel, Vernon, Dwivedi,
Gruzelier, & Baldeweg, 2005). For example, Bendixen,
Roeber, and Schröger (2007) cogently demonstrated that
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a single repetition of a stimulus is sufficient for the cogni-
tive system to extract a local rule and for MMN to occur
when this local rule is violated. The reduction of MMN
on the second deviant of a pair of deviants suggests that
the system evaluates the informational value of the repeti-
tion (Müller & Schröger, 2007; Müller, Widmann, & Schrö-
ger, 2005). The extraction of a local rule may potentially
have been facilitated in our study by the fact that condi-
tional probabilities predicted the occurrence of N following
another N. This contention converges with the absence of
MMN on the second deviant of a pair of deviants in an
experimental context in which deviants always occur in
pairs (Sussman & Winkler, 2001; Sussman et al., 2002). In
our task, while S was entirely predictable following NN
on the basis of task-wide conditional probabilities, it may
nevertheless have violated a locally defined rule and re-
sulted in distraction.

In conclusion, our study adds to previous knowledge on
behavioral novelty distraction by demonstrating for the
first time that, within the circumstances promoting dis-
traction (Parmentier, Elsley, & Ljungberg, 2010), novel
sounds do not capture attention by virtue of their rarity
but rather because they violate the cognitive system’s
expectation and clash with the perceptual trace from the
previous auditory stimulus (a clash that may itself violate
locally defined rules). This finding fits with pithy electro-
physiological evidence of rule violation detection (Horváth,
Czigler, Sussman, & Winkler, 2001; Paavilainen, Arajärvi, &
Takegata, 2007; Paavilainen, Simola, Jaramillo, Näätänen, &
Winkler, 2001; Schröger et al., 2007) and more generally
with the concept of a proactive brain extracting rules from
past events in order to predict future events (Bar, 2007;
Schröger et al., 2007; Winkler, 2007).
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