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This study aimed to investigate the underlying processes of the
development of cognitive flexibility between childhood and young
adulthood. We performed a diffusion model analysis on the reaction
time and accuracy data from four age groups (7-, 11-, 15-, and 21-
year-olds), who performed a task-switching task. We decomposed
the data into processes related to the reconfiguration of the cognitive
system to a new goal (i.e., task-set reconfiguration) and processes
related to the interference of the previous task (i.e., task-set inertia).
The developmental patterns of both processes indicated a relatively
early maturing mechanism, associated with task-set inertia, and a
later maturing mechanism, relating to task-set reconfiguration. This
pattern of results was interpreted in terms of the development of the
neural mechanisms involved in task switching, that is, the (pre-)sup-
plementary motor area and the ventrolateral prefrontal cortex.

� 2014 Elsevier Inc. All rights reserved.
Introduction

Cognitive flexibility refers to the ability to flexibly adjust behavior to the changing demands of the
environment and is a key component of human behavior (e.g., Miller & Cohen, 2001; Monsell, 2003).
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Cognitive flexibility can be examined using experimental tasks that require flexible switching between
task demands. A particularly useful task is the task-switching paradigm (for a review of adult litera-
ture on task switching, see Monsell, 2003; see also Kiesel et al., 2010; Vandierendonck, Liefooghe, &
Verbruggen, 2010). The task-switching paradigm requires the participant to make a choice between
two response alternatives such as deciding between the shape (e.g., circle, triangle) and color (e.g.,
yellow, blue) of a stimulus. The shape and color tasks are presented in mixed blocks, allowing the com-
parison of performance on task repetitions and task alternations. In adults, longer response latencies
and increased error rates are typically observed on trials that require a task switch (e.g., a shape–color
sequence of trials) compared with repeating trials (e.g., a shape–shape sequence of trials). The differ-
ence in performance between task-switch trials and task-repeat trials is referred to as switch costs
(Monsell, 2003).

Two major theories have been invoked for the explanation of switch costs. One account suggests that
switch costs can be attributed to the reconfiguration of the task set (De Jong, 2000; Meiran, 1996; Rogers
& Monsell, 1995). More specifically, it is assumed that once a task set is implemented, it stays active until
it has been replaced by another task set. Consequently, it has been argued that task-switching costs arise
from an executive or control process that reconfigures the cognitive system such that the relevant task
set is active for execution (e.g., Rogers & Monsell, 1995). The other account asserts that, once imple-
mented, a task set persists and interferes with new task-set configurations. This residual activation of
a task set from the recent performance of a task, dubbed ‘‘task-set inertia,’’ may interfere with the per-
formance of the new task. This account assumes that switch costs reflect interference from the previous
task at the level of stimulus–response associations, stimulus–stimulus associations, or response–
response associations (e.g., Allport, Styles, & Hsieh, 1994; Wylie & Allport, 2000).

One line of evidence for an executive control process account comes from studies showing that at
least part of the task-switching costs, ‘‘residual switch costs’’, persist even when participants have
ample time between trials to prepare for the upcoming task. It is hypothesized that residual switch
costs reflect the time taken by executive control processes, which must await stimulus presentation
and, therefore, are insensitive to the preparation interval (e.g., Monsell, Yeung, & Azuma, 2000). In
contrast, the ‘‘task carryover’’ account is supported by findings showing that switching from a difficult
task to an easy task takes longer to complete than vice versa. This observation is consistent with the
notion that the time needed for a task switch is determined primarily by the nature of the previous
task. Thus, it is argued that greater inhibition is required to the easy task set when performing the dif-
ficult one, and this inhibition carries over to the next trial requiring the performance of the easy task.
Overcoming this inhibition prolongs the selection of the appropriate response (e.g., Allport et al.,
1994). An alternative explanation of the ‘‘task carryover effect’’ concerns the effect of inhibitory con-
trol when switching between tasks (for a review, see Koch, Gade, Schuch, & Philipp, 2010). This
account assumes the involvement of an inhibitory mechanism that reduces the activation of the
current task in order to switch to a different task. Evidence for the effect of inhibition during task
switching was obtained in negative priming studies (e.g., Koch et al., 2010) and in n – 2 repetition costs
(e.g., Mayr & Keele, 2000).

Initially, task-switching costs have been explained in terms of single factor models, emphasizing
either task-set inertia or task carryover effects. More recently, most authors seem to entertain
accounts of task-switching costs based on a plurality of causes (cf. Monsell, 2003, p. 137). Thus,
Ruthruff, Remington, and Johnston (2001) proposed that both top-down and bottom-up processes
might be active during a task switch; the former are required for programming mental operations
involved in the upcoming task, whereas the latter are required for the actual execution of these oper-
ations. Similarly, Mayr and Kliegl (2003) suggested the existence of two processing stages during a
task switch; the first processing stage is associated with the retrieval of task rules from long-term
memory, and the second relates to the automatic application of rules to the stimulus at hand.

The notion of multiple mechanisms involved in task switching has stimulated research aimed at
identifying the mechanisms active in a particular paradigm as well as their temporal dynamics during
the task switch (for a review, see Vandierendonck et al., 2010). Recently, Schmitz and Voss (2012)
applied diffusion modeling for isolating mechanisms involved in different task-switching paradigms.
Diffusion modeling (Ratcliff, 1978) takes into account both latency and accuracy of reaction time (RT)
data and allows for decomposing the effects on both in meaningful underlying constructs. The
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diffusion model assumes that, in speeded two-choice tasks, stimulus processing consists of a noisy
accumulation of evidence over time. When the evidence is hitting a predefined boundary, a response
is emitted (see Fig. 1). The diffusion model decomposes the two-choice process into a set of informa-
tive parameters. Drift rate (v) quantifies the speed of information processing, reflecting stimulus dif-
ficulty and the processing ability of the participant. Boundary separation (a) quantifies response
caution and, thus, captures the speed–accuracy trade-off; Starting point (z) quantifies a priori bias
for one of the response options. Non-decision time (Ter) quantifies time used for encoding the
stimulus and executing the response.

Recently, a number of studies applied diffusion modeling to different task-switching paradigms
(e.g., Karayanidis et al., 2009; Madden et al., 2009; Mansfield, Karayanidis, Jamadar, Heathcote, &
Forstmann, 2011; Schmitz & Voss, 2012). Using the classical diffusion model (Ratcliff, 1978),
Schmitz and Voss (2012) examined task-switching processes with several variants of the alternating
runs paradigm and the explicit cueing paradigm. They observed higher drift rates for repeat trials than
for switch trials, which was interpreted as evidence for beneficial carryover effects from the previous
trial to the current trial. Drift rates were also higher when advance task cues helped participants to
prepare for the upcoming task, which was interpreted to suggest a higher task readiness. On this
account, task readiness can be influenced by preparation effects (i.e., more complete activation of
the new relevant task set) and inertia effects (i.e., carryover effects from the previous trial) (Koch &
Allport, 2006). Boundary separation was adjusted on a trial-to-trial basis. More specifically, it was
found that participants set boundaries lower (i.e., exercised less caution) when advance information,
indicating that the upcoming trial involved task-set repetition, was given provided that there was suf-
ficient time to prepare for the upcoming task. Finally, it was observed that the non-decision parameter
was increased on task-switch trials when advance preparation was not possible. This observation was
interpreted to suggest that the non-decision parameter may reflect higher order processes (e.g., top-
down biasing of relevant task components). In brief, Schmitz and Voss’s (2012) study demonstrates
that diffusion modeling provides a valuable tool for decomposing switch costs in psychologically rel-
evant constructs. More specifically, these authors demonstrated that differences in non-decision time
between task-repeat and task alternation trials reflect task-set reconfiguration processes, whereas dif-
ferences in drift rate provide a manifestation of task readiness shown to be influenced by inertia
effects (Schmitz & Voss, 2012). The results converge with earlier findings and allow for an interpreta-
tion of diffusion model parameters in terms of components of task switching. This in turn allows us to
assess developmental change in the alleged components underlying task switching.

The goal of the current study was to apply diffusion modeling to developmental change in task
switching. Early studies examining developmental change in executive functions revealed that young
Fig. 1. A schematic representation of the diffusion model. The model decomposes performance data for correct and incorrect
responses (RT and accuracy) into decision processes and non-decision processes. The decision process starts at point z, where
information is accumulated until a response boundary (0 [incorrect response] or a [correct response]) is reached, after which a
response is initiated. The mean rate of information accumulation (drift rate) is indicated by the solid black arrow. The non-
decision process includes encoding and response execution. The total RT equals the sum of the decision and non-decision
processes.
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children lack flexibility on the Wisconsin Card Sorting Test (e.g., Chelune & Baer, 1986; Levin et al.,
1996; Welsh, Pennington, & Groisser, 1991). More recent developmental studies have applied various
task-switching paradigms to provide a more detailed view on age-related changes in cognitive flexi-
bility (for a review, see Cragg & Chevalier, 2012). These studies typically reveal an age-related decrease
in switching costs (Cepeda, Kramer, & Gonzalez de Sather, 2001; Chevalier & Blaye, 2009; Cragg &
Nation, 2009; Crone, Bunge, van der Molen, & Ridderinkhof, 2006; Davidson, Amso, Anderson, &
Diamond, 2006; Deak, Ray, & Pick, 2004; Ellefson, Shapiro, & Chater, 2006; Gupta, Kar, & Srinivasan,
2009; Huizinga, Burack, & van der Molen, 2010; Huizinga & van der Molen, 2011; Reimers &
Maylor, 2005).

A prominent interpretation of developmental change in task switching refers to carryover effects of
the previous task interfering with the implementation of the current task. Several studies suggest that
carryover effects are larger in children compared with adults, children have greater difficulty in inhi-
bition of carryover effects when switching to currently intended actions, or both (Cepeda et al., 2001;
Crone, Somsen, Zanolie, & Van der Molen, 2006; Gupta et al., 2009; Huizinga & van der Molen, 2011;
Kray, Karbach, & Blaye, 2012). An early illustration was provided by Cepeda and colleagues (2001),
who required their participants to perform two tasks; deciding whether the number 1 or 3 was
present and deciding whether a single number (e.g., 1, 3) or three numbers (e.g., 111, 333) was present
on the screen. Participants received a cue indicating which task needed to be performed on the next
trial, and both the ‘‘response-to-cue’’ and ‘‘cue-to-stimulus’’ intervals were manipulated to examine,
respectively, the decay of task-set inertia and the preparation of the task set to be performed. Cepeda
and colleagues observed larger switch costs for children relative to adults, but only adults benefited
from a lengthening of the response-to-cue interval. In contrast, a lengthening of the cue-to-stimulus
interval reduced switching costs in both children and adults. This pattern of findings was interpreted
to suggest that children benefit from increased preparation time but, in contrast to adults, show little
evidence for a rapid decay of task-set inertia. The adult literature, however, indicates that task
switching cannot be reduced to a single mechanism. Most likely, task switching in children involves
multiple mechanisms similar to adult task switching. Unfortunately, little is known about the
developmental course of these mechanisms (cf. Cragg & Chevalier, 2012). The goal of this study, there-
fore, was to assess the mechanisms that are involved in developmental change in task switching. To
this end, we applied diffusion modeling to the data reported in Huizinga, Dolan, and van der Molen
(2006).

In Huizinga and colleagues’ (2006) study, participants performed a battery of experimental tasks
examining developmental change in executive function. The task battery included the Dots and Trian-
gles task adopted from Rogers and Monsell (1995). In this task, participants were presented with a
4 � 4 grid containing three to eight dots or triangles per half of the grid. During the ‘‘dots’’ task, par-
ticipants needed to decide whether there were more dots on the left or right side of the grid; during
the ‘‘triangles’’ task, they needed to decide whether there were more triangles in the upper or lower
half of the grid. Within trial blocks, participants received alternating runs consisting of four dots or
triangle trials. Four age groups performed the task: 7-, 11-, 15-, and 21-year-olds. The results showed
that switch costs decreased with advancing age until 15 years. The current application of diffusion
modeling should allow for identifying the mechanisms involved in switching between the dots and
triangles tasks as well as tracking their developmental course.
Method

A brief presentation of the method can be found in the original study (Huizinga et al., 2006). The
current presentation provides more detail needed to fully appreciate the results reported below.
Participants

The study included four age groups: 95 7-year-olds, 107 11-year-olds, 108 15-year-olds, and 93 21-
year-olds. The descriptive characteristics of the participants are shown in Table 1.



Table 1
Participant characteristics for the initial sample (top) and final sample after outlier removal (bottom).

n Age Gender (F) Raven quartile

Min Mean Max n % Mean SD

7 years 95 6.27 7.16 7.95 50 53 3.44 0.93
11 years 107 10.47 11.19 12.47 64 60 3.18 0.93
15 years 108 14.24 15.33 16.78 57 53 3.10 1.00
21 years 93 17.52 20.81 26.51 71 76 3.77 0.53
Total 403 242 60

7 years 63 6.27 7.16 7.89 33 52 3.63 0.84
11 years 102 10.47 11.18 12.47 61 60 3.25 0.90
15 years 107 14.24 15.32 16.78 56 52 3.10 1.00
21 years 91 17.52 20.79 26.51 70 77 3.77 0.53
Total 363 220 61

Note. Characteristics include number of participants (n), age (minimum [Min], mean, and maximum [Max]), gender (number
and percentage of female [F] participants), and Raven quartile (mean and standard deviation).
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Apparatus and stimuli

The Dots and Triangles task was presented on a Toshiba Satellite 1600 laptop (Intel Celeron 800-
MHz processor, 15-inch 60-Hz monitor, 1024 � 768 pixels). The task required only left hand and right
hand responses. The response button for the left hand was the ‘‘z’’ key on the computer keyboard, and
the response button for the right hand was the ‘‘/’’ key (responses were counterbalanced across par-
ticipants). Target stimuli were red circles and green triangles. The size of the target stimuli covered
18.43� visual angle (horizontally and vertically).

Design

The task-switching paradigm required participants to respond to either dots (dots task) or triangles
(triangles task) with a left or right button press, depending on the instruction of the task. The mapping
of the responses onto the stimuli was counterbalanced across participants and kept fixed during the
experiment—with the constraint that for each participant responding to dots (or triangles) was related
to one task and responding to triangles (or dots) was related to the other task. Half of the trials
required a right hand response, and half of the trials required a left hand response.

Varying numbers of either green dots or green triangles were presented in a 4 � 4 grid on the
screen (i.e., three to eight dots or triangles per half of the grid, equally distributed) covering 78.69�
visual angle. The dots (or triangles) task required participants to decide whether there were more dots
(or triangles) in the left or right part of the grid (the ‘‘left–right’’ task). The triangles (or dots) task
required participants to decide whether there were more triangles (or dots) in the top or bottom part
of the grid (the ‘‘up–down’’ task). The number of dots (or triangles) presented on the left/right (top/
bottom) side of the grid varied pseudo-randomly between three and eight. The difference in the num-
ber of stimuli on both sides of the grid was set to three. A schematic of the task is depicted in Fig. 2.

Procedure

The Dots and Triangles task is part of a battery to assess the development of executive function from
childhood to young adulthood (Huizinga et al., 2006). This battery was composed of 11 tasks (three tasks
to assess working memory, three tasks to assess cognitive flexibility, three tasks to assess inhibition, and
two more complex executive functioning tasks). These tasks were presented in pseudo-random order.

The Dots and Triangles task required participants to perform on two ‘‘pure-task’’ blocks and one
‘‘task-switch’’ block. The pure-task blocks served to familiarize participants with the left–right and
up–down tasks. The task-switch block required participants to perform a switch task consisting of series
of four left–right trials and series of four up–down trials that were alternately presented to participants.
A task-switch block consisted of 160 trials comprising series of four dots trials and series of four triangles



Fig. 2. A trial sequence. In the first display (from left to right), a target stimulus of the ‘‘dots’’ task appears and a response is
required; participants need to respond by pressing the left key when there are more dots on the top half of the grid and by
pressing the right key when there are more dots on the bottom half of the grid. The second and third displays show a dots task.
The fourth and fifth displays show target stimuli of the ‘‘triangles’’ task; participants need to respond by pressing the left key
when there are more dots on the left half of the grid and by pressing the right key when there are more triangles on the right
half of the grid. The first, second, and third displays are task repetitions (dots), the fourth display is a task alternation (the task
switches from dots to triangles), and the fifth display is a task repetition (triangles).
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trials that were alternately presented to the participants. Before a switch block, participants received a
practice block consisting of 60 trials.

There was a fixed delay of 1000 ms between the start of a trial block and the presentation of the
stimulus. A stimulus remained on the screen until a response was given. Participants had 3500 ms
to respond. The time interval between the response and the next stimulus varied pseudo-randomly
between 900 and 1100 ms in steps of 10 ms.

Instructions

Prior to performing the task-switch block, participants were instructed that the left–right and up–
down tasks would alternate: ‘‘Now the tasks will alternate, and the stimuli will tell you which task to
perform. As before, if you see dots [triangles] in the grid, you decide on which half of the grid there are
more dots [triangles] and press left if the left half of the grid contains more dots [triangles] or right
when the right half of the grid contains more dots [triangles]. When you see triangles [dots] in the
grid, you decide on which half of the grid there are more triangles [dots] and press left if the upper
half of the grid contains more triangles [dots] or right when the lower half of the grid contains more
triangles [dots].’’

Data analyses

The focus of analyses was on reactions that could be preceded by a trial requiring the same task
(i.e., task-repeat trials) and reactions requiring a switch to the alternative task (i.e., task-switch trials).
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The difference between task-repeat trials and task-switch trials provides an estimate of the costs
involved in switching between tasks. Switch costs were subjected to two sets of analyses. The first
set included analyses of variance (ANOVAs) to assess the developmental trajectory of cognitive flexi-
bility in terms of response accuracy and response latency. The second set included a diffusion model
analysis to assess the developmental trajectory of the underlying components of switch costs, the rel-
ative contribution of these components to switch costs, and the effects of trial sequence. Prior to the
ANOVAs, participants for whom the left–right and/or up–down tasks proved too difficult, as indicated
by accuracy scores of 54% or less, were excluded. In addition, all trials with RTs shorter than 120 ms,
and all error and post-error trials as well as trials on which no response was given (misses), were
excluded (see also Steinhauser & Huebner, 2006). The first five responses of each block were consid-
ered warm-up trials and excluded from analysis. Finally, extreme RT outliers were removed for each
participant and age group separately. An extreme RT outlier was identified as a response with a
latency exceeding the individual’s mean by more than 2.5 standard deviations (both sides) or a
response with a latency higher than 3 times the interquartile range from the 75% percentile of all
RTs within an age group or lower than 3 times the interquartile range from the 25% percentile of all
RTs within an age group.

The same pre-analysis procedures were followed for the diffusion model analyses except that RTs
of both correct and error responses were included. Note that post-error trials were not included in the
diffusion model analyses. To obtain a detailed view on possible effects of task-set preparation and
task-set inertia, trials were divided into four types: task switch, first task repetition, second task rep-
etition, and third task repetition. The main parameters of the diffusion model, except starting point,1

were allowed to vary freely over these conditions (i.e., all parameters were estimated separately for each
condition). The starting point was fixed halfway between boundaries (Schmitz & Voss, 2012). To obtain
stable parameter estimates given the relatively low number of trials available in each condition, variabil-
ity parameters were fixed to zero2 (Voss, Nagler, & Lerche, 2013). Parameters were estimated using
‘‘fast-dm’’ (Voss & Voss, 2007) with the Kolmogorov–Smirnov (KS) method for each condition of each
individual participant separately. Fast-dm uses an efficient algorithm to reliably estimate all diffusion
model parameters (Voss & Voss, 2008). The main parameters of interest were boundary separation, drift
rate, and non-decision time. Developmental changes in task switching are assessed for each of the
parameter values. In addition, trial repetition effects are examined across age groups. Finally, the results
that emerged from the diffusion modeling analyses are used to assess the developmental time course of
task-switching mechanisms (i.e., task-set inertia and task-set reconfiguration).

Results

In the analyses, age group (7-, 11-, 15-, or 21-year-olds) was included as a between-participants
factor. After exclusion of the participants following the above-mentioned procedure, the final sample
of the current study was composed of 63 7-year-olds, 102 11-year-olds, 107 15-year-olds, and 91
21-year-olds. Descriptive characteristics of the remaining participants are given in Table 1. The exclu-
sion of trials in the remaining sample amounted to 23.8% in 7-year-olds, 14.5% in 11-year-olds, 11.5%
in 15-year-olds, and 10.3% in 21-year-olds. The specification of outliers and the remaining number of
trials in each age group are given in Table 2. The mean Raven quartile scores differed between groups,
F(3,337) = 11.81, p < .001. Post hoc tests (Bonferroni corrected) indicated significant differences
between the 7- and 21-year-olds compared with the 11- and 15-year-olds.

Preliminary analyses, with Raven quartile (IQ) as an additional factor, did not qualitatively change
any of the main effects or interactions involving the task manipulations. The gender distribution
across groups differed significantly. This was caused by a relatively larger proportion of women in
the young adult group, v2(3) = 15.03, p = .002. The addition of gender as a factor in the analyses
reported below indicated no relationship between gender and task switching, both within groups
1 Because the diffusion model was set up using the ‘‘correct’’ and ‘‘incorrect’’ response boundaries and correct/incorrect
responses were randomly assigned to the left or right side of the grid, the starting point is assumed to be equidistant from the two
response boundaries.

2 We thank one of the reviewers for this suggestion.



Table 2
Percentage of trials removed per age group (total, percentage post-errors removed, and percentage RT outliers removed) and
average number of remaining trials (mean and standard deviation).

Outliers Remaining trials

Total (%) Post-error (%) RT (%) Mean SD

7 years 23.8 19.5 4.3 108 22
11 years 14.5 10.6 3.8 120 17
15 years 11.5 7.7 3.8 123 17
21 years 10.3 6.2 4.0 133 13
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and between groups. Therefore, Raven IQ scores and gender were not included in the analyses
reported below.

Analysis of variance

The performance on trials where the current task was similar to the previous response (task
repetitions) was compared with the performance on trials where the current task was different from
the previous response (task switches). The square root of the proportion correct and median RTs were
submitted to separate repeated measures ANOVAs with trial type (task repetition vs. task switch) and
task rule (left–right vs. up–down) as within-participants factors. Descriptive statistics are shown in
Table 3.

Accuracy
The ANOVA revealed a main effect of age group, indicating increased accuracy when children get

older (78% [SE = 1.1] in 7-year-olds, 85% [SE = 0.9] in 11-year-olds, 88% [SE = 0.9] in 15-year-olds,
and 90% [SE = 1.0] in 21-year-olds), F(3,359) = 23.26, p < .001, gp

2 = .163; a main effect of trial type,
reflecting switch costs, as indicated by a larger proportion of correct responses on task repetitions
compared with task switches (91% [SE = 0.4] vs. 80% [SE = 0.7]), F(1,359) = 314.35, p < .001,
gp

2 = .467; and a main effect of task rule, indicating that the up–down task was more difficult compared
with the left–right task (80% [SE = 0.6] in up–down task vs. 90% [SE = 0.6] in left–right task),
F(1,359) = 183.42, p < .001, gp

2 = .338. In addition, the interaction between age group and trial type
showed a trend, indicating decreasing switch costs when children are getting older (11% in 7-year-
olds, 12% in 11-year-olds, 9% in 15-year-olds, and 10% in 21-year-olds), F(3,359) = 2.16, p = .092,
gp

2 = .018 (see Fig. 3).
Follow-up analyses indicated that the effect of trial type in 7-year-olds did not differ from the effect

of trial type in 11-year-olds (p = .510), who differed from 15-year-olds (p = .024), who did not differ
from 21-year-olds (p = .895). The ANOVA also yielded a significant interaction between age group
and task rule, indicating a decrease of the task rule effect when children get older (11% in 7-year-olds,
11% in 11-year-olds, 9% in 15-year-olds, and 6% in 21-year-olds), F(3,359) = 4.81, p = .003, gp

2 = .039,
Follow-up analyses indicated that the effect of task rule in 7-year-olds did not differ from the effect
of task rule in 11-year-olds (p = .750), who differed from 15-year-olds (p = .004), who did not differ
from 21-year-olds (p = .213).

Finally, the interaction between task rule and trial type reached significance, F(1,359) = 104.49,
p < .001, gp

2 = .225, suggesting that switching to the left–right task was easier (93% [SE = 0.5] in task-
repeat trials vs. 88% [SE = 0.7] in task-switch trials) compared with switching to the up–down task
(88% [SE = 0.5] in task-repeat trials vs. 73% [SE = 0.9] in task-switch trials). This effect was equal across
age groups.

Response latencies
The ANOVA performed on median RTs yielded a significant main effect of age group, indicating

shorter RTs with advancing age (1422 ms [SE = 26] in 7-year-olds, 939 ms [SE = 21] in 11-year-olds,
670 ms [SE = 20] in 15-year-olds, and 635 ms [SE = 22] in 21-year-olds), F(3,359) = 220.09, p < .001,



Fig. 3. Task preparation time (in milliseconds) as a function of trial type for each age group. ‘‘Repetition’’ refers to repeating
tasks, and ‘‘alternation’’ refers to switching between tasks (i.e., ‘‘left–right’’ task and ‘‘up–down’’ task or vice versa). Error bars
indicate 1 standard error from the mean. (*) Indicates a significant follow-up test for switch-costs (latency) at p < .001.

Table 3
Estimated marginal means (M) and standard errors (SE) for median reaction time in milliseconds (Median RT) and percentage
correct responses (accuracy) across conditions (task rule and trial type) and age groups.

Median RT Repetition Alternation Total

Left–right Up–down Total Left–right Up–down Total Left–right Up–down Total

M SE M SE M SE M SE M SE M SE M SE M SE M SE

7 years 1058 21 1273 23 1166 21 1595 33 1760 43 1677 35 1326 25 1516 31 1422 26
11 years 693 17 834 18 764 17 1057 26 1170 34 1114 28 875 20 1002 24 939 21
15 years 538 16 622 18 580 16 716 26 804 33 760 27 627 19 713 24 670 20
21 years 513 18 578 20 545 18 686 28 764 36 725 29 600 21 671 26 635 22
Total 701 9 827 10 764 9 1013 14 1124 18 1069 15 857 11 976 13 916 11

Accuracy % SE % SE % SE % SE % SE % SE % SE % SE % SE

7 years 88 1.2 80 1.2 84 1.0 81 1.7 66 2.1 73 1.5 84 1.3 73 1.4 78 1.1
11 years 94 1.0 88 1.0 91 0.8 89 1.4 70 1.7 79 1.2 92 1.1 79 1.2 85 0.9
15 years 95 1.0 91 1.0 93 0.8 90 1.4 78 1.8 84 1.2 93 1.1 84 1.2 88 0.9
21 years 95 1.0 94 1.1 95 0.9 91 1.5 80 1.9 85 1.4 93 1.2 87 1.3 90 1.0
Total 93 0.5 88 0.5 91 0.4 88 0.7 73 0.9 80 0.7 90 0.6 80 0.6 85 0.5
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gp
2 = .648. There was a main effect of trial type, reflecting switch costs, as indicated by shorter RTs on

task-repeat trials compared with task-switch trials (764 ms [SE = 9] vs. 1069 ms [SE = 15]),
F(1,359) = 889.50, p < .001, gp

2 = .712; and a main effect of task rule, indicating faster responses to
the left–right task compared with the up–down task (857 ms [SE = 11]) vs. 976 ms [SE = 13]),
F(1,359) = 209.60, p < .001, gp

2 = .369. As expected, age groups differed with respect to the effect of trial
type, as indicated by a decrease of switch costs with age (511 ms in 7-year-olds, 350 ms in 11-year-
olds, 180 ms in 15-year-olds, and 180 ms in 21-year-olds), F(3,359) = 53.66, p < .001, gp

2 = .310 (see
Fig. 3).
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Follow-up analyses indicated that the effect of trial type in 7-year-olds differed from the effect of
trial type in 11-year-olds (p < .001), who differed from 15-year-olds (p < .001), who did not differ from
21-year-olds (p = .988). In addition, there was a significant interaction between age group and task
rule, indicating a decrease of the effect of task rule when children grow older (190 ms in 7-year-olds,
127 ms in 11-year-olds, 86 ms in 15-year-olds, and 71 ms in 21-year-olds), F(3,359) = 9.06, p < .001,
gp

2 = .070. The effect of task rule in 7-year-olds differed slightly from the effect in 11-year-olds
(p = .062), who differed from 15-year-olds (p = .016), who did not differ from 21-year-olds
(p = .213). There was no relationship between task rule and trial type, suggesting that switching
between the left–right task and the up–down task takes as much time as switching between the
up–down task and the left–right task. This effect was equal in all age groups.
Interim conclusion
The results indicated that performance on task-repeat trials was faster than that on task-switch tri-

als. This is consistent with the task-switching literature (e.g., Monsell, 2003). Most important, task-
switching costs decreased with advancing age in accord with the literature on developmental change
in task switching (e.g., Cragg & Chevalier, 2012). Finally, switching from the left–right task to the up–
down task took as long as switching from the up–down task to the left–right task. Although switching
to the left–right task was easier than switching to the up–down task, the interaction between trial
type and task rule was not altered by age group. Hence, the factor task rule was not included in the
diffusion modeling analyses reported below.
Diffusion modeling analyses

The model fitted the data fairly well,3 allowing for a meaningful interpretation of the parameter val-
ues (see Appendix Fig. A1 and Appendix Table A1 for model fits and model parameter estimates). The
parameter values were then submitted to ANOVAs with age group as a between-participants factor
and trial type as a within-participants factor. The levels of the factor trial type consisted of the average
parameter value of the first, second, and third task-repeat trials versus task-switch trials. Finally,
separate analyses were performed on task repetition trials.
Boundary separation
The ANOVA revealed a main effect of age group, indicating a decrease in boundary separation with

advanced age (1.86 [SE = 0.06] in 7-year-olds, 1.64 [SE = 0.05] in 11-year-olds, 1.41 [SE = 0.05] in 15-
year-olds, and 1.44 [SE = 0.05] in 21-year-olds), F(3,358) = 14.64, p < .001, gp

2 = .109. Follow-up analy-
ses showed that 7-year-olds differed from 11-year-olds (p = .003), who differed from 15-year-olds
(p = .001), who did not differ from 21-year-olds (p = .656). A main effect of trial type was absent.
The interaction between age group and trial type was also absent. See Fig. 4 (left panel).
Drift rate
The ANOVA yielded a main effect of age group showing an age-related increase in drift rate (0.81

[SE = 0.07] in 7-year-olds, 1.38 [SE = 0.06] in 11-year-olds, 1.94 [SE = 0.06] in 15-year-olds, and 2.16
[SE = 0.06] in 21-year-olds), F(3,358) = 87.37, p < .001, gp

2 = .423. There was a significant main effect
of trial type, indicating a higher drift rate on task-repeat trials (1.99 [SE = 0.04]) compared with
task-switch trials (1.15 [SE = 0.04]), F(1,358) = 515.42, p < .001, gp

2 = .590. The interaction between
age group and trial type was also significant (0.48 in 7-year-olds, 0.87 in 11-year-olds, 1.03 in
15-year-olds, and 0.99 in 21-year-olds), F(3,358) = 9.25, p < .001, gp

2 = .072. Follow-up analyses
showed that the trial type effect in 7-year-olds differed from the trial type effect in 11-year-olds
(p = .001), who marginally differed from 15-year-olds (p = .087), who did not differ from 21-year-olds
(p = .689). See Fig. 4 (middle panel).
3 For the diffusion model analyses, one additional participant was excluded because the number of trials for this participant was
too low (< 10) for estimating diffusion model parameters.



Fig. 4. Diffusion model parameter estimates as a function of trial type for each age group. The left panel shows boundary
separation, the middle panel shows drift rate, and the right panel shows non-decision time (in milliseconds). Error bars indicate
1 standard error from the mean.
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Non-decision time
The ANOVA revealed a main effect of age group, indicating a decrease in non-decision time when

children grow older (819 ms [SE = 20] in 7-year-olds, 542 ms [SE = 15] in 11-year-olds, 411 ms
[SE = 15] in 15-year-olds, and 397 ms [SE = 16] in 21-year-olds), F(3,358) = 112.87, p < .001,
gp

2 = .486. There was also a main effect of trial type, showing shorter non-decision time on task-repeat
trials compared with task-switch trials (435 ms [SE = 6] vs. 649 ms [SE = 13]), F(1,358) = 343.06,
p < .001, gp

2 = .489. Finally, the effect of trial type on non-decision time decreased with age (420 ms
in 7-year-olds, 217 ms in 11-year-olds, 107 ms in 15-year-olds, and 113 ms in 21-year-olds),
F(3,358) = 33.46, p < .001, gp

2 = .219. Follow-up analyses indicated that the effect of trial type on
non-decision time in 7-year-olds differed from the effect of trial type in 11-year-olds (p < .001),
who differed from 15-year-olds (p < .001), who did not differ from 21-year-olds, (p = .846). See
Fig. 4 (right panel).

Interim conclusion
The current results are consistent with the findings reported previously by Schmitz and Voss

(2012). Drift rate was slower on task-switch trials relative to task-repeat trials. In addition, non-deci-
sion times took longer on task-switch trials compared with task-repeat trials. In contrast with the
results from Schmitz and Voss, we did not observe an increase in response caution on task-switch tri-
als relative to task-repeat trials. The current pattern of findings suggests that switching is associated
with longer durations of both response selection and non-decision processes. The developmental pat-
tern is consistent with findings obtained by Ratcliff, Love, Thompson, and Opfer (2012) who reported
age-related increases in drift rates and a reduction in non-decision time and boundary separation.

In the next section, the above results are used to assess developmental change in two major mech-
anisms thought to be involved in task-switching performance: task-set reconfiguration and task-set
inertia.

Repetition effects

The Dots and Triangles task used an alternating runs design; that is, four dots (triangles) trials
alternated systematically and predictably with four triangles (dots) trials. The previous analyses
focused on performance differences between task-repeat and task-alternation trials to assess develop-
mental change in switch costs. The current design, however, also permitted an analysis of repetition
effects on the parameter values resulting from the diffusion model analyses.

Boundary separation
There was no effect on boundary separation across trial repetitions, F(2,716) = 0.67, p = .510,

gp
2 = .002.



Fig. 5. Task repetition effects of drift rate as a function of age group. The solid line indicates the first repetition trial, the dashed
gray line indicates the second repetition trial, and the dotted gray line indicates the third repetition trial. Error bars indicate 1
standard error from the mean.
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Drift rate
Drift rate tended to increase across trial repetitions, F(2,716) = 2.63, p = .073, gp

2 = .009. There was
no interaction between trial repetition and age group. Follow-up analyses revealed a significant linear
increase across trial repetitions (p = .032) (see Fig. 5).

Non-decision time
Trial repetitions did not alter non-decision time, F(2,716) = 0.48, p = .608, gp

2 = .001. In addition,
there was no interaction between trial repetition and age group.

Interim conclusion
Differences in the drift rate parameter between task repetitions indicate that on the first repetition

task readiness is lower than on the second and third repetition tasks. Lower task readiness on the first
repetition could be due to proactive interference from the previous task set. That is, the task set asso-
ciated with the trial before the switch is still active, leading to a lower drift rate on the first repetition.
Alternatively, the decrease in task readiness could be due to proactive interference from the current
task set. Thus, on the second and third repetition trials, the new task set is more active than on the
first repetition, leading to a higher drift rate on the second and third repetitions relative to the first
repetition.

Analysis of task-switching mechanisms

Inspired by Schmitz and Voss’s (2012) study, and based on the current findings, developmental
change in task-set reconfiguration and task-set inertia was examined using the parameter values from
the diffusion modeling analysis of the RTs that emerged from the task-switch paradigm. The primary



190 W.D. Weeda et al. / Journal of Experimental Child Psychology 126 (2014) 178–197
focus of the analyses reported below is on non-decision time. Schmitz and Voss demonstrated that
task-set reconfiguration is captured by non-decision time. Differences in non-decision time between
alternation and repetition trials, therefore, can be interpreted in terms of the duration of task-set
reconfiguration. In addition, differences in drift rate between alternation and repetition trials can be
interpreted in terms of task-set inertia. It should be noted, however, that because both boundary sep-
aration and drift rate influence decision time, this measure does not provide a ‘‘pure’’ estimate of deci-
sion time. Therefore, we performed simulations where each individual’s boundary separation
parameter of the alternation trials was set to the value of this parameter in the repetition trials.
Differences in response latencies of these simulations between repetition and alternation trials then
provide an estimate of decision time that is driven by differences in drift rate alone (see also
Wagenmakers, 2009).

Finally, differences in non-decision times and decision times were computed between task-repeat
and task-alternation trials. According to Schmitz and Voss (2012), the former should provide an
estimate of task-set reconfiguration, assuming that other processes (e.g., stimulus encoding, response
execution) involving non-decision times do not differ between task-repeat and task-alternation trials.
The latter were thought to provide an estimate of task-set inertia because the effects of boundary
separation have been partialled out.

Non-decision time
The results for non-decision time have been reported above and are not presented here again for

reasons of conciseness. Importantly, the results showed a developmental decrease in switch costs
on non-decision times, suggesting an age-related increase in the efficiency of task-set reconfiguration
processes. See Fig. 6 (left panel).

Decision time
The ANOVA performed on decision times yielded a main effect of age group, showing an age-

related decrease (572 ms [SE = 21] in 7-year-olds, 387 ms [SE = 16] in 11-year-olds, 264 ms [SE = 16]
in 15-year-olds, and 245 ms [SE = 17] in 21-year-olds), F(3,358) = 60.73, p < .001, gp

2 = .337. There
was also a main effect of trial type, indicating shorter decision times on task-repeat trials relative
to task alternation trials (319 ms [SE = 7] vs. 415 ms [SE = 12]), F(1,358) = 153.89, p < .001, gp

2 = .301.
A marginally significant interaction between age group and trial type indicated that switch costs on
decision times tended to decrease with advancing age (101 ms in 7-year-olds, 125 ms in 11-year-olds,
82 ms in 15-year-olds, and 76 ms in 21-year-olds), F(3,358) = 2.29, p = .078, gp

2 = .019. Follow-up
Fig. 6. Processing time of non-decision and decision-related components as a function of age group. The left panel shows non-
decision time and decision time for task-repeat and task-switch trials as a function of age group. The right panel shows the
developmental trajectory of task-set inertia and task-set reconfiguration effects. Error bars indicate 1 standard error from the
mean. (*) Indicates a significant Time x Age group interaction (p < .001).



Table 4
F values obtained in three separate repeated-measures ANOVAs with age group (7-year-olds vs. 11-year-olds|11-year-olds vs. 15-
year-olds|15-year-olds vs. 21-year-olds) as a between-participants variable and time (non-decision time [task-set reconfiguration]
vs. decision time [task-set inertia]) as a within-participants variable.

Comparison

7-year-olds vs. 11-year-oldsa 11-year-olds vs. 15-year-oldsb 15-year-olds vs. 21-year-oldsc

Age group 4.76* 12.80** .01ns

Time � Age group 18.03** 1.20ns .46ns

Note. ns, not significant.
a df = 1, 162.
b df = 1, 207.
c df = 1, 196.

* p < .05.
** p < .001.
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analyses indicated that switch costs on decision times in 7-year-olds did not differ from the effect in
11-year-olds (p = .314), who differed from 15-year-olds (p = .033), who did not differ from
21-year-olds (p = .777). See Fig. 6 (left panel).

Developmental trajectories
The switch costs on non-decision and decision times were transformed to z scores and submitted to

an ANOVA to assess potential differences in developmental trajectory. The ANOVA had time
(non-decision time [task-set reconfiguration] vs. decision time [task-set inertia]) as a within-partici-
pants factor in addition to the between-participants factor age group. The ANOVA yielded a significant
interaction between time and age group, F(3,358) = 17.06, p < .001, gp

2 = .125, showing that the
age-related decrease in switch costs on non-decision times (task-set reconfiguration) was
more pronounced compared with the decrease in decision time (task-set inertia). See Fig. 6 (right
panel).

The interaction was examined further by comparing age groups using separate ANOVAs. The out-
comes of these analyses are presented in Table 4. It can be seen that total switch costs decreased from
7 to 11 years of age, with a stronger decrease for non-decision time compared with decision time.
Between 11 and 15 years of age, switch costs decreased, but the rates were similar for non-decision
and decision times. Finally, between 15 and 21 years of age, switch costs did not change
significantly.
Discussion

This study set out to examine the mechanisms underlying developmental change in cognitive flex-
ibility by applying diffusion modeling on the data that emerged from a previous study employing a
battery of executive function tasks, including a task-switch paradigm (Huizinga et al., 2006). The
results are consistent with previous reports showing decreasing switch costs with advancing age
(for a review, see Cragg & Chevalier, 2012). More specifically, the current results revealed that switch
costs decreased from 7 to 15 years of age and then leveled off into adulthood, indicating that the abil-
ity to flexibly switch between rules is reaching mature levels during adolescence. The current devel-
opmental pattern is very similar to the one reported by Reimers and Maylor (2005), who observed that
switch costs leveled off beyond 17 years of age, but differs from those reported by other studies show-
ing that switch costs continue to decrease into young adulthood (e.g., Cepeda et al., 2001). Most likely,
specific features of the task-switch paradigm contribute to the exact developmental trends reported in
the literature (e.g., Cragg & Chevalier, 2012).

In the developmental literature, the ability to flexibly switch from one task set to another is typi-
cally interpreted in terms of executive control (e.g., Kray et al., 2012) or, more specifically, in terms of a
reduced sensitivity to carryover effects across trials (e.g., Crone et al., 2006). The current diffusion
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model analysis should shed more light on the mechanisms contributing to the developmental change
in task switching. Interpretations of task switching converged on the notion that multiple mechanisms
must be involved during the various processing stages on a task-switch trial (e.g., Vandierendonck
et al., 2010). The diffusion model seems well suited to identify some of the mechanisms that are active
during these processing stages, as shown by Schmitz and Voss (2012). In the following, we discuss
how parameters of the diffusion model allow for a decomposition of the mechanisms implicated in
task switching.

Non-decision time (Ter)

Previous research has demonstrated that non-decision time refers to stimulus encoding and
response-related processes outside the decision process proper (Ratcliff, 1978). Therefore, it seems
likely that stimulus encoding and response-related processes are active on both task-repeat and
task-switch trials. The current findings showed a substantial developmental trend in non-decision
time, suggesting that stimulus encoding and response-related processes become more efficient
when children grow older. This finding is consistent with a previous application of a diffusion
model analysis to developmental change in speeded responding (e.g., Ratcliff et al., 2012). The
observed developmental decrease in non-decision time is also consistent with electrophysiological
studies showing age-related reductions in the latency of brain potential components related to early
perceptual processes, namely N1 and P2 (for a review, see Taylor & Baldeweg, 2002). The findings
are also consistent with observations showing a developmental decrease in the efficiency of
response-related processes, including response preparation (e.g., Flores, Digiacomo, Meneres,
Trigo, & Gomez, 2009; Killikelly & Szucs, 2013) and response activation and execution (e.g.,
Graziadio et al., 2010; van de Laar, van den Wildenberg, van Boxtel, Huizenga, & van der Molen,
2012).

Non-decision time was considerably prolonged on task-switch trials relative to task-repeat trials,
consistent with the results reported by Schmitz and Voss (2012). In the absence of cues that signal
the upcoming task set, the current lengthening of the non-decision time might be due to task recon-
figuration processes and, more specifically, with the retrieval of the task set from memory (e.g.,
Mayr & Kliegl, 2003; for a review, see Schmitz & Voss, 2012). Importantly, the increase in non-deci-
sion time on task-switch trials decreased with advancing age, suggesting a developmental increase
in the efficiency of the retrieval of task sets from memory, which would be consistent with previous
studies demonstrating developmental change in active memory retrieval (e.g., Dionne & Cadoret,
2013).

Drift rate (v)

The drift rate parameter in the diffusion model reflects the speed with which information from the
stimulus accumulates over time toward one of the response boundaries. Consistent with previous
reports (Ratcliff et al., 2012), the current results showed an increase in drift rate with advancing
age, indicating that the rate of information processing increases when children are growing older. Drift
rate was more pronounced on task-repeat trials compared with task-switch trials, consistent with the
findings reported previously by Schmitz and Voss (2012), who interpreted this effect to suggest that
drift rate is influenced by task readiness. Importantly, the difference in drift rate between task-repeat
and task-switch trials differentiated between age groups; that is, the difference in drift rate was larger
in the youngest children compared with the other age groups. This finding is interpreted to suggest
that the efficiency with which stimulus information is sampled reaches mature levels relatively early
in development.

The analysis focusing on task-set repetitions revealed an increase in drift rate across repetitions.
The observation that the information sampling rate is lower on the first task-set repetition compared
with subsequent repetitions might be due to proactive interference from the previous task set, which
would be more pronounced for young children compared with older children and young adults. This
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interpretation is consistent with the findings reported previously by, for example, Crone and
colleagues (2006) (see also Gupta et al., 2009), who observed that young children suffer more than
older participants from carryover effects between trials.

Boundary separation (a)

In the diffusion model, boundary separation refers to response caution. When the separation of
response boundaries is large, there is more information needed from the stimulus to generate a
response (Ratcliff, 1978). The current results showed a developmental decrease in boundary separa-
tion, suggesting that children respond with less caution when they are growing older. This pattern
is consistent with the results observed by Ratcliff and colleagues (2012), who likewise observed that
young children entertain a more conservative response style. The current findings did not reveal an
effect of task switching on boundary separation. Previously, Schmitz and Voss (2012) observed larger
boundary separations on task-switch trials compared with task-repeat trials, indicating that partici-
pants exercised more caution on the former relative to the latter. But this effect was observed only
when participants were able to prepare for the new task set. When participants could not predict
the task transition, they seemed to be cautious by default. In this regard, the current findings suggest
that participants did not dynamically adjust their response boundaries based on the regularities in the
trial sequences (i.e., the task set changed every 4 trials).

Additional analyses

A final set of analyses was conducted to examine the developmental trajectories of non-decision
time versus decision time. Decision time was assumed to capture task-set inertia, whereas non-deci-
sion time was taken to reflect task-set reconfiguration (e.g., Schmitz & Voss, 2012). The results that
emerged from these analyses showed that task-set inertia and task-set reconfiguration have different
developmental trajectories. That is, task-set inertia decreased during mid-adolescence (from 11 to
15 years of age), whereas task-set reconfiguration decreased during early and mid-adolescence (from
7 to 15 years of age). This pattern of findings makes at least two important points. First, the observa-
tion of different developmental trajectories associated with task-set inertia and task-set reconfigura-
tion contributes to the literature suggesting that multiple mechanisms are implicated in switching
between tasks (e.g., Vandierendonck et al., 2010). Second, this pattern is consistent with the develop-
mental literature suggesting that top-down mechanisms, such as task-set reconfiguration, take longer
to mature than bottom-up mechanisms such as task-set inertia (e.g., Crone, Zanolie, Van Leijenhorst,
Westenberg, & Rombouts, 2008).

Before closing, it should be noted that a relatively small number of trials was available for diffusion
model analysis. Typically, diffusion model analysis is performed on a large number of trials per con-
dition (e.g., Voss et al., 2013). Although the number of trials was relatively low in some conditions, the
current study yielded a data pattern that is overall consistent with the findings of previous studies.
Moreover, additional analyses (e.g., constraining parameters, EZ-diffusion model analysis) revealed
that the current data pattern is quite robust, further heightening our confidence in the outcomes of
the current study.
Conclusion

The current results are consistent with the literature showing a pronounced developmental trend
in flexible rule switching (e.g., Cragg & Chevalier, 2012). The application of diffusion model analysis
allowed for a decomposition of the developmental trend in task switching into a relatively early
maturing mechanism, associated with task-set inertia, and a later maturing mechanism, relating to
task-set reconfiguration. This pattern is consistent with neuroimaging results reported previously
by, for example Crone, Donohue, Honomichl, Wendelken, and Bunge (2006), who observed two neural
mechanisms involved in task switching: an early maturing mechanism, relying on the (pre-)supple-
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mentary motor area (see also Mansfield et al., 2011) and presumably related to task-set inertia, and a
later maturing mechanism, implicating the ventrolateral prefrontal cortex and most likely associated
with task-set reconfiguration. It would be of considerable interest to combine diffusion modeling and
neuroimaging in future developmental studies investigating the mechanisms underlying flexible rule
use and their developmental trajectories.
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Appendix
Fig. A1. Fits for the diffusion model. Observed RT (x axis) and estimated RT based on diffusion model parameters (y axis) of all
participants for all trial types (first, second, and third repetitions and alternation) are shown. Solid black dots indicate correct
responses, and gray crosses indicate error responses. Perfect fit would be obtained if a dot (or a cross) falls on the diagonal line.
Fits are given for fast RTs (first row), median RTs (second row), and slow RTs (third row). The bottom row shows observed and
estimated accuracy data (percentage correct) for all trial types.



Table A1
Diffusion model parameter estimates.

Parameter Drift rate (v) Boundary separation (a) Non-decision time (Ter)

Mean SD Mean SD Mean SD

Age 7 years
Repetition 1 1.03 0.47 1.94 0.63 0.60 0.20
Repetition 2 1.05 0.40 1.82 0.42 0.61 0.16
Repetition 3 1.09 0.62 1.89 0.76 0.62 0.20
Alternation 0.57 0.41 1.83 0.34 1.03 0.39

Age 11 years
Repetition 1 1.71 0.80 1.73 1.01 0.43 0.16
Repetition 2 1.92 0.87 1.72 0.97 0.43 0.14
Repetition 3 1.82 0.64 1.57 0.51 0.43 0.12
Alternation 0.95 0.48 1.60 0.46 0.65 0.25

Age 15 years
Repetition 1 2.38 0.94 1.37 0.64 0.37 0.11
Repetition 2 2.48 0.97 1.46 0.85 0.36 0.10
Repetition 3 2.49 0.91 1.46 0.72 0.35 0.10
Alternation 1.42 0.68 1.40 0.73 0.46 0.16

Age 21 years
Repetition 1 2.60 0.97 1.41 0.76 0.35 0.11
Repetition 2 2.63 1.06 1.48 0.86 0.33 0.09
Repetition 3 2.74 0.95 1.34 0.45 0.34 0.08
Alternation 1.67 0.94 1.47 1.01 0.45 0.19

Note. Estimates of diffusion model parameters per trial type and age group are shown. We calculated mean values by averaging
parameter estimates for each trial type over all participants within an age group. The standard deviations of these values are
shown in the SD columns. The parameters v, a, and Ter indicate drift rate, boundary separation, and non-decision time (in
seconds), respectively. Note that estimates of z (starting point) are omitted because this parameter is fixed to a/2.
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